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ABSTRACT

A finite difference technique utilizing an irregular-triangular mesh and
the Wielandt inverse-iteration method is used to compute normal mode slosh-
ing in spheroidal tanks of eccentricities ranging from zero to 0.8 under
zero and low gravitational conditions for a contact angle of 5 degrees. The
results are used to calculate, using a finité Fourier series expansion,
liquid response to sinusoidal, square-wave, and periodic pulse lateral per-
turbing accelerations. Reduction of'either liquid volume or gravity level

decreases the fundamental sloshing frequency.
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The small-amplitude lateral sloshing of an incompressible inviscid liquid
partially filling a spheroidal tank, as determined by surface and gravita-
tional forces, is studied for zero- and low-g conditions. The problem is
formulated in a curvilinear coordinate system parallel to the equilibrium
free-surface. The first few normal modes of oscillation having one nodal
diameter and the corresponding eigenfrequencies are calculated numerically
for a liquid-tank contact angle of 5 degrees. These modes are computed by a
finite difference method using an irregular triangular mesh and a Wielandt
inverse iteration technique. The forced response to lateral perturbing
accelerations is developed in terms of the calculated modes using a finite
Fourier analysis. The calculations are carried out for tanks of eccentricity
0., 0.5, 0.68, and 0.8 and for liquid volumes ranging from 1/8 to 7/8 of a
full tank. The (dimensionless) Bond number B, = pgaag/c (p, gys @, and ©
are the liquid density, steady axial acceleration, tank semi-major axis, and
surface tension) ranges from zero to 100. At the lower values of Ba’ the
equilibrium meniscus may leave dry spots at both the bottom and the top of
the tank.

General conclusions include: (a) The fundamental sloshing frequency is
generally an increasing function of Bond number Ba and liquid volume. The
fundamental sloshing frequency is zero or near zero for Ba = 0+ when the
equilibrium free-surface intersects the tank wall in a single circle and is
generally positive for Ba = 0 when the tank wall and free-surface intersect.
in two circles. (b) Computation of the response to lateral perturbing accel-
erations can be effected by use of the finite Fourier analysis, but, where
appropriate, engineering computations may be more easily made using a spring-
mass analog for normal mode liquid sloshing. Parameters for this analog are
presented for first mode sloshing. These are adequate for engineering compu-
tations when the first term is dominant in the Fourier series for the forced
motion. (c) The irregular-triangular, finite-difference, Wielandt inverse-
iteration scheme appears adaptable for this type of problem in a wide variety

of tank shapes when currently available digital computers are fully utilized.



INTRODUCTION

In the recent past, considerable attention has been given to the sloshing of
liquids in containers of the shapes used in modern propulsion systems, such
as cylindrical containers with spheroidal ends (sometimes inverted) or simple
spheroidal ones. Interest has focused more recently on sloshing under low-g
conditions, where surface tension effects can dominate the behavior of the

liquid.

There now exists a large body of literature concerning sloshing under condi-

(1)

little work has been done on investigating low-g sloshing,

However, comparatively

(2-8)

it has been limited to conditions in which the effects of surface tension

(3,7)

tions where surface tension is not important.

and much of
are slight so that gravitational forces still essentially dominate.

The object of this study is to investigate linearized low-gravity sloshing in
spheroidal tanks of zero to moderate eccentricity. Specific objectives in-
clude: (a) Determination of the normal lateral sloshing modes and frequencies
as a function of the axial acceleration level, the surface tension and density
of the liquid, and the liquid volume in the tank. (b) Determination of the
forced response of the liquid to lateral perturbing accelerations. (c) Compu-

tation of the lateral forces and moments acting on the tank.

The linear analysis employed here describes small amplitude oscillations of
the liquid about its equilibrium shape and neglects the influence of viscosity.
(Experiments have shown that viscosity can be safely neglected for determining
the natural frequency of even quite small scale models.(2’3’7)) It is assumed
that the fluid properties and the contact angle of the liquid are constant and
do not vary dynamically.
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The frame of reference used for this study is fixed to the container as shown
in Figure 1. The liquid in tanks of a space vehicle will not be acted upon
directly by a lateral force that acts on the vehicle, but rather acted upon
indirectly by the moving walls of the tank. For convenience, however, the
tank is considered fixed and the liquid as being influenced directly by a

lateral perturbing acceleration in the tank-fixed coordinate system.

The mathematical problém descriging the sléshing is é linear boundary value
problem. In the tank-fixed coordinate system it can be assumed that the liquid
motion is irrotational so that the governing equation is Laplace's equation,

the equation of continuity for an ideal liquid. The solution of Laplace's
equation in the domain occupied by the liquid must satisfy a zero normal velo-
city boundary condition at the tank walls and dynamical and kinematic conditions
at the free-surface. The dynamical condition is obtained from the unsteady
form of the Bernoulli equation and the kinematic condition relates the velocity
potential to the motion of the free-surface. The motion of the free surface

is constrained to preserve the contact angle constant at the tank wall.

Previous analysis related to sloshing in spheroidal tanks has been limited to
the simpler high-g (zero surface tension) case. It was found, even for this
case, that the use of approximate methods is required, in general, for solving
the governing equations.(9:lo:ll) In the more complex low-g case studied here,
approximate methods are also required. To solve the boundary value problem,

an extension of the numerical technique successfully applied previously to

low-g sloshing in hemispherically bottomed cylindrical tanks is'used.(h:5)

The numerical solution of the sloshing problem is carried out in three stages:
(a) The equilibrium meniscus shape is computed for each combination of Bond
number (dimensionless ratio of gravitational to surface tension forces) and
liquid volume. (b) A suitable finite difference mesh is constructed by
mapping a cross section of the liquid conformally onto the unit circle, by
constructing a mesh within the circular domain, and by mapping this mesh
conformally back into the liquid cross section. (c) The eigenfrequencies and
eigenfunctions of the discretized system of equations are determined. The
forced response to lateral perturbing accelerations, as well as other engi-

neering data, is then developed in terms of the solutions.
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PROBLEM FORMULATION

In this section the mathematical formulation for lateral sloshing in a
spheroidal container is presented. It closely follows that presented pre-
viously for a hemispherically bottomed cylindrical container and, wherever
possible, similar notation is used to facilitate comparison.()+’ 5)* A

new formulation is required primarily because the one used earlier is based
upon representing the free surface as a single valued function of the radial
coordinate in circular cylindrical coordinates, a representation that is

not general enough for a spheroidal container. The possibility of repre-
senting a free surface double-valued in those coordinates is allowed for
here by employing a surface polar normal coordinate system to express the

free~-surface boundary conditions.

Surface Polar Normal Coordinates

Iet the unit vectors associated with the coordinate directions iﬁ circular
cylindrical coordinates (r,8,z) be denoted by the triple [gr,ge,l_cl, and let

the equations of a meridian of the equilibrium free-surface be
r = R(s) and z = Z(s) ,

where the parameter s 1is arc length along the curve measured from the

). ¥* Then the position vector of

lowest point on the surface (see Figure 1
a point on the equilibrium free-surface, a surface of revolution about the

z-axis, can be represented by

*
Reference numbers are superscripted in parentheses.
Variasbles appearing in this report are dimensionless, unless otherwise

stated. They are defined in the Nomenclature List, Appendix A, where the
relationships to the physical dimensioned variables are given.
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r=R(s)e +2(s) k (1)

The surface polar normal coordinates are defined relative to the equilibrium
free-surface by taking & and & to be unit vectors tangent and normal

to a meridian. Let En point from the liquid into the gas and Es point in
the direction of increasing s so that the unit vectors [gs,ge,gn] form a
right-handed triple. This triple is associated with the coordinate directions
in surface polar normal coordinates (s,8,), where T is the distance of a
point from the equilibrium free-surface along En' In terms of circular

cylindrical coordinates the unit vectors are

e =R e +Z k and e =-Z2 e + R k s
-s s —r s = -n s =r 5 ~
and conversely (2)
e =R e -Z e and k=2 e +R e .¥
-1 s —s s —n - s -5 s =n

As a sphere of radius T rolls over the equilibrium free~surface, the center
generates a "parallel" surface. These parallel surfaces have no self-inter-

sections so long as

N <min (R, R,) ‘ (3)
where
R =[2 R -2ZR 1% and R = [R/2 1t
1 ss's s ss 2 S
are the principal radii of curvature of the equilibrium free-surface. Con-

sequently, a perturbed free-surface can be described in surface polar normal

coordinates by the relation

N = H(s,8;1) (&)

*The subscripts on R and Z denote differentiation. Throughout the
paper such notation is used to denote differentiation of a dependent
variable with respect to an independent variable, when the context makes
it clear that such differentiation is intended. g
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provided that departure from the equilibrium surface 1 = O 1is small enough
so that
< mi .
max H < min (Rl’Rg) (5)

(The relation (5) is not a significant restriction for the small amplitude
sloshing problems considered here.) lLet ¥ be the angle from e, to Ss
(alternately from k to gn) so that Zs = giny and RS = cosy{, then one
obtains directly that the position vector of a point can be described in

surface polar normal coordinates by
r =x(s,8,M) = (R~ M2,) e, * (2 +TR) k ; (6)

when T = H(s,egt) the point lies on the perturbed surface; when N =0 the

point lies on the equilibrium surface and (6) reduces to (1).

The Governing Equation

The liquid is assumed to be incompressible and inviscid and its motion ir-

rotational so that the velocity potential satisfies Laplace's equation
+ =% + =3 + @ =0 (7)

within the liquid, subject to the boundary condition on the container wall

that the normal velocity be zero,

3% _
5 =0 (8)

on w. The boundary conditions on the free-surface present the major

complexity and are derived in the next parts of this section.

Free-Surface Boundary Conditions

Bernoulli Equation. One of the free-surface boundary conditions is obtained

from the nonsteady state Bernoulli equation, which in surface polar normal
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coordinates takes the form

p Ba(Z+HRs) - Btr(R-HZs) cos® + (1+Ba) Qt * = [”Z@'szne
(9)
+ @+ )% - al® 1217 = £(v)

on N = H(s,8;t), where the sign of the velocity potential & is chosen so
that the velocity v 1is

X:Z@:QE"’ @

r~—-r

B~

o6 + @ZE . (10)
Equations (9) and (10) are for fluid motion relative to the container in a
coordinate system fixed to the container. The choice of the function on the
right hand side of (9) is arbitrary and, for convenience, is set equal to

P> the static liquid pressure at a fixed point on the equilibrium meniscus.
The liquid pressure at the interface is related to the gas pressure through
the surface-tension and the mean curvature of the free-surface by means of
the relation

pg-p=2ﬂ- | (11)

Substitution of this relation and p, for f(t) into (9) results in

1+B

ey I BQ(Z+HRS) + Btr(R-HZS) cos® - (1+Ba) 2, - -z lﬂg@ - sz\\2

2
(12)
@ 2P 0 b, - g on - .

The form that the mean curvature ~}f in (12) takes in surface polar normal

coordinates can be calculated from the relation(l3) that for a surface defined
by F =0

o H= - aiv(gradF/||gradF| )JM (13)
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The vector gradF/||gradF|| is the unit normal to the surfaces F = constant,
and (13) states that the negative of its divergence when evaluated on the
surface F = O is twice the mean curvature of that surface. The desired
form for M is thus obtained by taking F = T - H(s,6;t) in (13) and using
the expressions for the divergence and gradient in surface polar normal co-

ordinates.

The standard formulas expressing the gradient of a function F and the
divergence of a vector G in orthogonal curvilinear coordinates specialize

in the case of surface polar normal coordinates to

FS Fg F
EeiFeie tg s TR, (1)
1 2 3
and for
G=ge e5"8 % " 858,
to 1
. N S + +
div G Bihhy [(h2h3g1)s (hshye,)g (h1h2g3)n] (15)
where hl’ h2, and h3 are the magnitudes of the derivatives of the position
vector (6) with respect to the coordinates, that is,
or or or
by &5 =552 P28 =32 804 N3 8 = 57
or
hy =1- T](ZssRs - ZsRss) =1- n/Rl ’
h, =R-MZ = R(l-n/Rz), and (16)
h, =1.
3

Observe that hl >0 and h2 > 0 imply that T < min (Rl,REL which is
equivalent to (3). (The identity

2 2 2
(ZssRs - ZSRSS) - ZSS TR
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which follows from the fact that the parameter s 1is arc length, is useful

in evaluating hl.)

If the perturbed surface is

F(s,6,Mt) = 1M - H(s,83t) =0, (17)
then (14) becomes
Hs HG
LradF:_?-e-s-h_EG+En’
1 2
so that
grad F hH h Hy hh,
s = =- .- + Q =n
|| gzaa | °@ s 9
8
where 1/2 (l )
Q = h.h, ||lgrad 7| = [h 202 + %02 + n.%n 2] .
1t 1£8g o fg 1 1%

Using (15), (17), and (18) to evaluate (13) yields the desired expression

forﬂ,
2. 2

2y h.°H h '
1 P2 ) | [P1 Ho\ 1 B
o K- hlhg[(“Q )+( =) - (“Q )n] (19)

on M = H(s,®;t) with h

, and h, given by (16).

Contact Angle Condition. The end condition for the free-surface boundary

condition (12) and (19) is given by specifying the contact angle between
the free-surface and the container wall. The condition that the contact

angle remain fixed at the value ® during the motion is that

cos® = Dyt o (20)

along the curve of intersection, where By is the unit normal to the free-
surface pointing from the liquid into the gas and I, is the unit inward

normal to the container wall. The expression for n; 1is given by (18) when
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it is evaluated on the free surface T = H(s,0;t) at the intersection with

the wall. If the equations of a meridian of the container wall are
r =X(r) and z = Y(7),

where T is arclength measured along the curve from the lower pole of the

container, then a, is given by the expression

n =-Ye +Xk
- ™r ™

evaluated at the intersection with the free-surface. With respect to the
unit vectors of surface polar normal coordinates the expression becomes,

by use of (2),

= - + + .
EW ( YTRS XTZS) SS * (YTZS XTRS) -e—n

Substituting into (20) then yields the desired contact angle condition,

hH, b,
co® = - 5 (-YTRS + XTZS) + 5 (YTZS + XTRS) (21)

along the curve(s) of intersection

R-N2Z,=X , Z+TMBR =Y.

Kinematic Condition. The remaining free-surface boundary condition is the

kinematic condition, which connects the motion of the free surface with the
velocity potential. It is derived from the total derivative with respect to

time of the equation defining the free-surface, which is

%E [n-H(s,05t)] = H o+ grad[N-H(s,8;t)] » grad 8 =Oon T =H.

10
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Expressing the gradient in surface polar normal coordinates then yields the

kinematic condition as

QsHs §SHG
H, = Qﬂ - 2 - 2 onN=H. (22)
1 2

Linearizstion

The only nonlinearities of the problem appear in the free-surface boundary
conditions, (12), (19), (21), and (22). These can be linearized by assuming

that the perturbing Bond number B is small enough so that H is small

tr
compared to the principal radii of curvature of the equilibrium free-surface,

that is,

. 1 R ]

< =
H << min [Z 7, % (23)

ss''s s 'ss s

where (Z R - ZSRSS) = ¢, 1is the curvature of a meridian and Z /R siny /R

is the other pr1n01pal curvature. Neglecting the O(H2) terms in (12)(all

angular velocity terms are of this order) then yields

2]
1l ZS ) |
= (RH ) + = [(z R, - ZR_ ) —_ J H
R R
R
ZS
- F — - - +
+ (ZSSRS ZSRSS) 7 - ByZ-B,HR +B R cosd
- (1 + Ba) 2, -A=0onM=0,
where the constant A is equal to Py = P, Qﬁé twice the mean curvature

at the point at which p_ is evaluated (11) The terms

Z
S
- 4 a— - =
(ZSSRS ZSRSS) = -B,2-12=0, (2k)

form the equation of the equilibrium free-surface. With these deleted, the

equation becomes

11
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2
1 1 2 Zs H
ﬁ(R Hs)s * ;5 Hog * (ZssRs - ZsRss) \T
(25)
- - = =0 .
B, HR_ + B, R cos® - (1 + Bd) 3 =0Oon 1

The end conditions for (24) and (25) are found from (21). For the equili-

brium free-surface (24), where 1M = 0, (21) yields the terminal end condition

cos®@ =Y Z +X RS] (26a)
TS T sds=s ‘

=T,

where Sy and T, are the values of s and T, respectively, at the
uppermost intersection of the equilibrium free-surface and the container

wall,
z2(s,) = ¥(r,) , R(sy) =X(r) .

If there is sufficient liquid to cover the container bottom, then the inter-
section at s = 5,4 and T = Ty is the only one, and the initial end condi-

tion is the symmetry condition about the axis of revolution, namely
Z =0 at s=0. . (26b)

If there is insufficient liquid to cover the bottom, then there is another
(lower) circle of intersection at s =0 and T = Tgs and the initial end
condition is (26a) at s =0 and T =T, as well. (Recall that s 1is
zero at the lowest point on the equilibrium free-surface -- at the axis r = 0
if there is only one circle of intersection; at the lower circle of inter-

section if there are two.)

The terminal end condition for (25) is derived from the expressions for the
unit normals at the intersection of the container wall and the equilibrium

free surface, which are

12
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[n J = = gin® e + cos® e
—wd =5 =-n

T
u
and
[-I-IH:I T Eh
s=su
=0

respectively. The unit tangent to the container wall at the intersection

in the direction of increasing T 1s also required; it is

E

] =cos® e + sin@ e .
L P -8 -n
u

At the intersection of a meridian of the perturbed free surface 1 = H(s,0;t)
with the container wall let the values of s, T, and T be denoted by 815

“1’ and T Then if X denotes the angle from &, to = (alternately

l.
from k to n ) so that

dn
X
dr dr =7

then the linearized expression for the wall normal is

[E ] = [Ew - (Tl-Tu g% ET]

W T=T T=T
1 u

to first order. Similarly, since

de
B 4,
ds ds —s

one obtains for the surface normal

B ™ I R R (SN N
1 n=n,

S S=8
n* ="

13
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to first order. This latter expression becomes
H
- 8 4y ]
[ng) =l e - oo (s w2

S=8
n=1y *

s=8
N=0

when (19), with O(H?) terms neglected, is used.

The relationship between (sl—su), (Tl-Tu), and H can be observed from a
curvilinear triangle obtained when the perturbed surface lies "above" the
equilibrium free surface, by extending the equilibrium free surface beyond
the intersection with the container wall (see Figure 2). 1In the triangle

with vertices at
[s,,0] = (x(r,), ¥(7))) »
[sl,o] , and
Lsom] = (X(rp), ¥(1y))

the angle at [su,O] is ©®, the angle at [sl,O] is right, and the lengths

of the sides are s, - s, H(sl,e), and T, - T . Hence, to first order

H cot®

0]
|
2]
I

and H/sin® .

3
1
3
1

By substitution into the requirement that

cos® = [BH *n ] B

1

one then obtains the desired linearized terminal contact angle condition
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H, sin® + (%% cos® - g%) H=0 (27a)

When there is insufficient liquid to cover the tank bottom, then the initial
contact angle condition required at the lower circle of intersection is

similarly found to be

@ - (SY - Xy oyl
H, sin® (ds cos® dT) H=0 (27b)

H=§=—a-gon’ﬂ=0. (28)

The task, then, is to solve the linear boundary value problem (7), (8), (25),
(27), and (28), where the equilibrium free-surface is defined by (2L), (26),
and the given volume of liquid. In the foregoing, it is assumed that

Ba 2 0; negative values of Ba are not considered in this study.

The Eigenvalue (Normal Mode) Problem

The linear boundary value problem posed above is inhomogeneous because of the
transverse perturbing acceleration proportional to Btr in (25). The solu-
tion can be obtained in two parts. The problem is first made homogeneous by
setting Btr to zero and solving the normal mode problem. The result is a
set of eigenfunctions that may then be used in a Fourier series expansion to

obtain the response to the transverse perturbing acceleration.

Normal Modes. Let the periodic time dependence and the angular dependence of
® and H for the kth normal mode be

15
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=]
I

o (r,z) cos® cos(wkt)

(29)
H

"

H (s) cos® sin(wkt) .

The 6 dependence chosen in (29) corresponds to the modes having one dia-
metral node excited by the lateral perturbing acceleration Btr cos@, Sub-

stituting (29) into (25) with B , = 0 and into (28) gives

t

(3 b - 2am ok (m ) -Ba )

s/s R
Z 2
* [(ZSSRS - ZsRss)2 +(_R_s)] H =0 »on M=0. (30)

and

wka(s) = Qk (r,z) = ék (s,0) = Qk (s,O))
n n ll
The boundary conditions on Hk and ék are the one on H in (27) and

@k =0 on W ;
n

(31)
and also, Qk(o,z) =0 and Hk(o) =0,

if the liquid covers the container bottom. Solution of this problem yields

a set of eigenfunctions {@k}, eigenvalues {wk2}, and eigenmgdes {Hk}.

Response to Perturbing Accelerations. For a sinusoidal perturbation of

amplitude Btr’

By, = Btr sin(wot) ,

the velocity potential of the perturbed motion can be represented as a Fourier

series

& = cos® cos(wot) i Akék(r,z) s (32)

16
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where the solution to the normal mode problem, @k(r,z), satisfies (30) and
(31), but not (25) and (28). Inserting the series into (25) and (28), the
free-surface and kinematic boundary conditions for the perturbed motion, and

combining the results lead to

2 2 2y
+ - =
(l Ba) i (wk wo ) Akgk Btr woR

on the equilibrium free-surface, r = R(s) and =z = Z(s). Now, R can be
expressed as an expression in the &_ evaluated on r = R(s) and z = Z(s),

R = i D8, [R(s), z(s)] . (33)

It can be shown that the @k's and the corresponding Hk'S‘_form a biorthogonal
set with the orthogonality condition,

"u =0 fork #m,
S @ka R ds
° #£0 fork =m s
where 84 is the length of a meridian of the equilibrium free-surface, measured
from the axis when there is a single circle of intersection and from the lower
circle when there are two. Consequently, the expression for the Fourier co-
efficients in (33) take the form
54 )
g HkR ds
D, = —> . (34)

k su
SO ékﬂk R ds

Thus, for sinusoidal excitation, the coefficient Ak in (32) is

A =TT+B) "2 5 (35)

and the velocity potential for the sinusoidally perturbed motion becomes

17
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B.  cos® cos(w t) D, w
g = X °© ~y K ° 5 (r,2) . (36)
1+B 2 'k
o k wk - wo

The procedure for obtaining the solution for any periodic perturbation that

possesses a Fourier series expansion of the form
B,. = By, ﬁ C, 51n(mw°t)

is similar. The solution is

¢ = cos® i Qk(r,z) E Ak(m) cos(mwot) ,

where R (37)
Ak(m) _ Dy By T Cn %
(1+ Ba) w2 - now 2
k o}

Particular perturbations of interest are the square wave and the periodic

pulsing accelerations, for which the Fourier coefficients are

0, m even

C = for the square wave
m 4
pil m odd
and
O, m even
= m-l s 3
Cm = > mém for the periodic pulse ,

L .
e (-1) sin—%~, m odd
where & is the ratio of At, the perturbing pulse width, to % T = ﬂ/wo,

half its period (see Figure 3).

The explicit expressions for the normal surface displacement at the wall,

the item of principal interest, are then found from (28). They are

18
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B w D

tr . k . .
H]9=O = 755 sinat ? 5 5 & ]z=Z(s ) for sinusoidal, (38)
o k=l w - n u
5=5 k o r=R(s)
u u
ﬁtr y © ® sin(mwot)
HJG:O “TT3 T § D, > 5 55 ] @ ]z=Z(s ) for square wave,
_ o k=1 m=1 m(wk -m (.Do n I‘=R( Su) (39)
55y m odd u
ana X ne1
B ® © 5 gin 28T sin(mw t)
Hooo =1 ErB 2 Dl Z (1) 5 = o loeg(s ) (B0)
- o " k=1 * m=l m(e,” - 7w, n r;R(su)
"%y m odd u

for periodic pulse perturbations.

Mechanical Analogue. For practical design applications it is convenient to

express each sloshing mode in terms of the fundamental mode of an equivalent
spring-mass mechanical analogue. To calculate the parameters of this analogue
it is necessary to obtain expressions for the lateral force and moment acting
on the container wall, which, in turn, can be found from the pressure. The

pressure at the wall is

pg—X—BaZ-(l+Bd)§t , in the liquid
p = (41)

pg s in the gas ,

where the first expression is the linearized form of the Bernoulli equation
(9). When there is sufficient fluid to cover the container bottom, the lateral

force on the wall is given by the integral

2 TL
Fx = g S p simx cos® Xdr 40 .
o Yo

This integral, which is taken over the entire container wall, becomes, upon

substituting (41) and discarding terms of higher than first order,
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Fx = S S pg sinX cos® Xdr dé
o Yo
an T +H csc@®
S S (h + de) simy cos® Xdr de
2m T

u
- (l+Ba) S g Qt siny cos® Xdr 4d®
o Yo

The © integration ylelds zero for the first integral and for the part of

the second between the limits O and Tu. Thus

en

F =~ (\ + BaZu) sim X csc® S Hucose ae

am T
- (1 + Ba) S S Qtsinx cos® Xdar 4o .
(o] (o]

For the kth normal mode one obtains, after substituting (29) and the second
of (30),

w, (l+B )

= n[-(x+Bazu)sinxuxucsc® + S 3 s1ﬁXXd¢]Hk s1n(w t) . (42)

F
*x

nu

The moment of the lateral force is given by the integral

2n TL
S S pX cos® (Y sinx + X cosX) dt a8

M
y

which becomes simply

21 T

L
M - (1- l—é) S S pXY cos® sinX dr de
b o) o)

J

n

for the spheroidal tank with origin at the tank center (Figure la),
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X cogX = - ;E Y sinX .
b

Using the same technique as above, one cbtains in general

en

- 1 :
= (1 - b2) [(X+BdZu) sirk X Y, csc® SO Hﬁcose ae

217 Ty
+ (l+Ba) S S Y3 simx cos® Xar d ,
o) (o]

and for the kth normal mode

1 w, (l+B )
M&k = ﬁ(l-gﬁ)[(h+BaZu) simx X ¥, csc® - ——;T—————-S 8 simx XYdT] B, s1n(wkt)
nu

(43)

For the case when there is not sufficient liquid to cover the container bottom,

the same procedure yields the expressions

ka = Tr[- ()\+BaZ

& A+BaZu) simX X csc®

5 (k)
w “(1+B,)

M e ST &, SindeT] H, sin(wkt) ,

knu )

and

1 . ) .
M =m(1- ;5)[(k+BaZ£) 31ﬁX2X£YLcsc® —_— + (X+BaZu) sinx X Y csc®

yk Hku
N
wk2(1+Ba) (45)
- —Tk— ST & sirxxXYd'r] B, sin(wkt) .
nu L

The point of action Zy on the container axis of the single force to which

the mechanical analogue is made equivalent is then the ratio
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2 =M /Ty | (46)
k k

where Zk is measured from the center of the tank. Because the amplitude

of the force imposed by a spring-mass oscillator, which is made equal to

the amplitude of FX s 1s nki, and the amplitude of the energy is

nkﬁe/e, the spring &onstant of the analogue must be

=)
e = ka/ZVk s (¥7)
where Vk is the amplitude of the energy of the kth mode of the liquid,
- a8,
vV, =3 (l+Ba) S e, = R ds . (L48)
o}

For the mechanical analogue to have the fundamental frequency w, its mass

must therefore be

"uk = uk/mk2 . (49)
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NUMERICAL ANALYSIS

The common angular variation of the velocity potential and normal displace-
ment for the kth normal mode is explicitly exhibited by the factor cos® in
(29) and (30). Consequently, the domain in which the eigenvalue problem
developed in the preceding section must be solved can be taken as a radial
section of the liquid within the tank in the plane perpendicular to the
single diametral node. When the volume of liquid is large enough to insure
that the bottom is completely covered, the radial section is bounded by the
axis of revolution, the meridian of the tank, and the meridian of the free-
surface (Figure la). When the bottom is uncovered, the radial section is a
lunar region between the meridians of the free-surface and the tank (Figure
1b).

Throughout this section of the report, when no confusion will result, the sub-
script k attached to H and & will be suppressed to simplify the notation.
By using the relation (30), written as

wH(s) = @n(r,z) = @n(s,O) s

the eigenvalue problem can be reformulated in terms of the kth velocity po-
tential and its normal derivative on the equilibrium free-surface. For the
bottom covered case the complete restatement follows. The velocity potential

satisfies

- (3 +

1 _
r 3 + @Zz) + =5 =0 (50)

r
r

s

within the liquid subject to the boundary conditions
$(0,z) = 0 (51)
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along the axis within the liquid,

= 2
8 =0 (52)
on the wetted tank meridian, and

1 1 2 Zs 2

-= = - + (=— ®
L (0] ) +fo 2 5 - [, - 250+ 6@ 1),
s’s R
(53)
= (1+8,) o 8

on the equilibrium free-surface. The free-surface boundary condition (53)

is subject to the end conditions

; 4y - X =0
[QH]S sin® +-(d_s cos® A &, A (54)
at the intersection between the free-surface and tank meridians (s = s,, N = 0)
and
¢ =0 | (55)

at the intersection of the free-surface with the axis (s = 0). The meridian

of the equilibrium free-surface is the solution to the differential equation,
Zs
- F ——] - - =
[(ZssRs ZsRss) R ] BdZ A 0 (56)
subject to the boundary conditions

cos® = YTZS + XTRs]s=s - (57)

T=T
u

and

z,=0 (58)

at s = 0, that when rotated about the axis encloses a given volume of liquid

within the spheroid.
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When the fluid volume is so small that the bottom is uncovered, the axial
boundary condition (51) disappears. The end condition (55) for the free-

surface boundary condition is replaced by the constant contact angle condition
3 - ﬂ -~ -% =
[Qn]s sin® (dS cos® dT) g =0 (59)

at s =0, M =0, the lower intersection between the free-surface and tank

meridians. Finally the constant contact angle condition

cos@® = YTZs + XTRS:Is=O (60)

T=T,
replaces the symmetry boundary condition (58) for the equilibrium free-surface.

The computation of the eigenvalues, u?, the eigenfunctions, %, and the eigen-

modes, H, falls into three major tasks:

® Determination of the meniscus shapes defining the domains filled

by given volumes of liquid.

® Development of irregular triangular meshes within the radial
sections of the liquid such that the finite difference approxi-

mations to the eigenvalue problems are symmetric.

® Solution of the approximate eigenvalue problems.

Finally, finite Fourier analyses in terms of the approximate eigensystems
yield, almost immediately, predictions of the shape of the forced response

of the liquid to lateral perturbing accelerations. Moreover, the wvalues

needed to set up an equivalent spring-mass mechanical analog ((44) through (49))
are an easy by-product of the computation. Each of the major tasks as well

as the subsidiary calculations will be discussed in turn.
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Computation of Meniscus Shapes

The Initisl Value Problems. Combining the differential equation for the

meridian of the equilibrium free-surface (56) with the relation

derived from

(s 1is arc length) yields a 2 x 2 system with the solution

R = - CZ and 2 = CR
ss s ss s

where

C=B3Z+N\- ZS/R = dy/ds (61)

is the curvature of the meridian. Consequently, (56) is equivalent to the

redundant first order system

= CU )
- - CW (62)

=
o
o
i
'_l

in which U and W are the r and 2z velocity components of & point
moving with unit velocity along a curve with the function C (61) as

curvature. When C is positive, the curve curls to the left as s increases.

Because only the tangent vectors are involved in the boundary condition (57),
the difference between the z-data of the free-surface and the tank may be

absorbed in the function z = Y(T). Thus the tank may be permitted to slide
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up and down the axis of symmetry relative to the surface. A convenient

z-datum for the equilibrium free-surface when the bottom is covered is

7(0) . (63)

i}
(@)

The conditions

R(0) =0, U(0) =1, and W(0) =0 (64)

then follow from the boundary condition (58).

On the solution to the initial value problem (62), (63) and (6L4), there is
at least one point (there may be three) at which the boundary condition (57)
holds. Let the tank be translated so that the meridian passes through such
a point. If the segment of the solution up to a point where (57) holds lies
entirely within the tank, then the two-point boundary value problem (62),
subject to (57) and (58) with A to be determined so that the volume has a
given value V, may be replaced by the problem of choosing A so that the
rotation of the segment of the solution of (62), (63), and (64) between the

origin and a point where (57) holds encloses a given volume V.
To obtain an analogous reformulation in terms of an initial value problem

when the bottom of the tank is dry, it is convenient to choose the z-datum

for the tank so that the equation of the tank meridian is
X2 + Y2/b2 =1. (65)
Choose an initial point

R(0) = R, = x(wz) and Z(0) = Z, = Y(TL) (66)

on the lower branch of (65). Re-expressing the contact angle condition (60)

in the form ¢ =x - ® yields
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1l

RS(O) = [XT cos® + YT sin@] )
=T,
and (67)
w(0) zs(o) = [YT cos® - x'r sin@]
T=T

u(0)

4
as the other initial conditions needed to define a solution of (62) as an

initial value problem.

In the family of solutions to the initial value problem (62) starting from
(66) and (67) and characterized by positive values of A, there is one for
which the boundary condition (57) holds at the first intersection with the
ellipse (65). Thus the two-point boundary value problem (62) subject to
the conditions (57) and (60) with A chosen so that the volume has a given
value V may be replaced by the problem of choosing A and either RL or
ZE 50 that the volume enclosed by the rotation of the segment of the
solution of (62), (66), and (67) between (Rz,Zz) and the point where (57)

holds encloses a given volume V.

Qualitative Behavior of the Solutions. In two special cases the .solution to

(62) subject to the initial conditions (63) and (64) can be written down.

For A =0, the solution is the straight line Z = O, for all Ba’ because
c(0) = 0 implies C = 0. Clearly the tank can be positioned s0 that a hori-

zontal plane makes the required contact angle.
From (61), it follows that
R¢ = cosy/C and ZW = siny/C (68)

are an alternate form for (56) or (62). For B, = 0, the circle

R(y) = (2 sing)/N and 2z(y) = 2(1-cosy)/A (69)
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with radius 2/|X| and centered at (R=0, Z = 2/h) satisfies (68). The
curvature of the meridian is the constant C = 1/2. An easy geometric con-
struction shows that the contact angle condition determines the radius and
hence A. Thus for Ba = 0, the equilibrium free-surface is a part of a
sphere so long as the circle (69) intersects the elliptical cross section

of the spheroid in two and only two points. For the spherical tank this is
the ¢ase for any volume; and the planar solution is the limit of the spherical

solutions as A approaches zero.

For Ba > 0, it can be shown that C = dy/ds is a positive and monotone
increasing function of s for O < ¢ <mw. Thus from (68) it is apparent
that for A > O the solution starting from ¢ = O (see (64)) lies in the
first quadrant. Moreover, the R coordinate increases with s to a local
maximum at ¢ = /2 and then decreases. The Z coordinate increases with
s to a local maximum at ¢ = m. Because the curvature C 1is monotonically
increasing, (62) implies that the solution curls more and more tightly to
the left. 1In fact beyond ¢ =1, 1t curls so rapidly that it never crosses
the axis again but becomes globally a spiral in the first quadrant. See

14)

Bakker for such curves.

Only in the limiting case, Ba = 0, when the solution is a sphere with con-
stant curvature, does the solution ever return to the axis again as s
increases. For Ba > 0, the denominator of the term ZS/R prevents the

curve from crossing the axis.

For all sufficiently large \, the solution to (62) or (68) starting from
(63) and (64) is so tightly curled in the interval O < ¥ < T that

R(m) < 2b
holds. For such cases the tank may slide along the common axis of symmetry
so that the upper branch of its cross section is tangent to the solution

near ¢§ = m. Lowering the cross section slightly will produce a position in
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which the contact angle condition holds when ® 1is small. Decreasing A\

will uncurl the solution, raise the point at which the contact angle condition
holds, and decrease the volume enclosed between the meniscus and the tank.

Thus for large A\, volume is a decreasing function of A. Unfortunately there
may be, for a fixed \, several points on the solution to (62), (63), and (64)
that both satisfy the contact angle condition and the condition that the solu-

tion lie entirely within the tank. Consequently, volume V is a multivalued

function of A. However, M\ is single valued as a function of V.

Applying the uncurling argument to the two-circle case shows that through
each initial point (RZ,Z z) there is at least one solution to (62), (66), and
(67) that satisfies the contact angle condition. What is not clear is whether

there may be more than one.

The One Circle Algorithm

The Basic Procedure. For a fixed Bond number, the meridian of a meniscus that

has a single circle of intersection with the tank is determined by specifying
X/2, the curvature at the axis of symmetry when the initial point of the
meridian is the origin. The shape of & spheroidal tank with equatorial semi-
axis unity is specified by the eccentricity e of its polar cross section or
by its polar semi-axis b = (1 - 62)1/2. Testing is facilitated by fixing
the center of the tank at (0,0,b) so that its cross section in the plane of

the meniscus meridian is the ellipse

r® + ((z-b)/0)% = 1 (70)

that passes through the origin and is tangent to the meniscus meridian there.

At each step in the numerical integration of (62), the basic procedure is to
slide the tank cross section down along the axis of symmetry, common to the

ellipse and the meniscus meridian, until the former passes through the point
just generated on the latter. With the ellipse so positioned there are two

questions to be resolved.
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(1) Does the meridian so far developed lie entirely within the

ellipse?

(2) Could the contact angle condition be satisfied within the integra-

tion step just completed?

If both answers are affirmative, the basic procedure concludes by cubic inverse
interpolation for the value of s at which the contact angle condition holds
and by calculating the cosine of the contact angle achieved, the volume V
included between the adjusted meniscus and the tank, and the derivative

av/dn.

Testing for Inclusion. Were the meridian of a meniscus to intersect the tank

at its equator and to satisfy the contact angle condition there,

Rs = cos{y = sin@ would hold. So long as
R, > sin@ (71)

holds, an intersection between the two meridians (tank and meniscus) at which
the contact angle condition holds must lie on the lower branch of the ellipse.

When (71) fails, a satisfactory intersection must lie on the upper branch.
In the latter case, the algorithm computes the distance
2 -
Q-z-2=b(1+[1-R17%) -z (72)

along the line r = R between the terminal point of the meniscus (R,Z) and
the upper branch of the fixed ellipse (70). A negative Q@ shows that the
meniscus meridian has escaped from the fixed ellipse and is an indication
that the integration should be terminated. If the curvature A/2 of the
meniscus exceeds the curvature of the ellipse at the origin, a nonnegative

Q suffices to guarantee that the entire meniscus lies within the ellipse.
This has been the case for all menisci with satisfactory intersections on the
upper branch within the range of eccentricities, Bond numbers, and volumes

considered in this report. Consequently, detailed checking for inclusion
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along the upper branch has not been included in the present version of the

algorithm.

For intersections along the lower branch of the ellipse, where (71) nolds,

the situation is more complicated. The algorithm computes the distance
Poz-2=b(1-[1-81Y2) -z

along the line r = R between the terminal point of the meniscus and the
lower branch of the fixed ellipse (70) and maintains a maximum of the values

of P previously computed, namely

- max [P]
P [0,sA8]
for a positive As less than the length of the last integration step.
Because P=0 at s =0, Pm z 0.

If

P< P , (73)

holds, then translating the fixed ellipse downward through a distance P
will still leave the meniscus point at which Pm was attained on or below
the tank meridian. Thus when (73) occurs, the algorithm ceases. testing and

returns to the meniscus integration.

If
P> P (74)

m

holds, then translating the fixed ellipse downward through a distance P will
put all previously computed meniscus points above the translated tank meridian.

Provided the mesh spacing is small enough,

dP/ds = cosy(tanX-tany)
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will be positive throughout an integration interval that contains a point

s at which the contact angle condition is satisfied because the inequality
X 2 ¢ must hold not only at s but also in a neighborhood thereof. Con-
sequently, P evaluated at s will also exceed Pm. Thus with small mesh

intervals it suffices to check (74) at the end of an integration step.

Testing the Contact Angle Condition. Four functions derived from the relations

X=¢y+0 and y=yx- 0 (75)

by taking sines and cosines are used to test for the satisfaction of the

contact angle condition. For example, g point s at which

Fl(s) = sink - (siny cos® + cosy sima)‘

or

- 1 =+
Fl(s) Y (RS sin® + Z_ cos®)
has a zero is a point at which the contact angle condition (75) is satisfied.

It is an appropriate test function to use when
dFl/ds =X, dr/ds

is large so that the change of sign of Fl between the ends of an integration

interval is easily detected numerically. So long as small puddles are not in

-1/2

consideration, F. may be used when 1 > RS > 2 holds. There are two

1

principles for choice among F., and its three analogues. First, the deriva-

1
tive must be large; second, difficulty in evaluating the function up to the

final subtraction must be avoided. Each test function derived from the
relation ® =X - ¢ violates one of these two principles.
Because the sine is monotone increasing in [0,7/2], the inequality

Y'r = sirX > siny = ZS (76)
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is equivalent to the inequality

X >4

derived from (75). These inequalities hold not only at the point where the
contact angle condition is satisfied but also in a full neighborhood of such
a point. Provided that the integration intervals are so small that a compu-
ted meniscus point terminating an interval within which the contact angle
condition is satisfied is within the neighborhood in which (76) holds, it is
safe to use the failure of (76) as a criterion for discontinuing the testing
procedure. (Practical experience shows that this is safe except near the
equator, for exeample, when R, YT, and Zs all exceed .99.) The basic pro-
cedure can be visualized by sliding the tank up and down along the axis of
symmetry, common to the tank and the meniscus, until the tank meridian passes

through the current terminal point of the meridian.

The Strategy. When, for a fixed tank and Bond number, the detail of the

relation between A and V, the volume enclosed by the meniscus, is still
not determined, the basic procedure may be used to survey all possible points
on the meridian at which the contact angle'condition holds. For éuch a
survey the numerical integration continues until the meridian satisfies one
of three conditions that guarantee no further points at which the contact

angle holds:

(1) The current terminal point lies beyond the line R = 1.
(2) The distance @ (72) has become negative.

(3) The meridian has passed beyond the point where it has a second

horizontal tangent, ¢ 2 .

By carrying out such a survey for a suitable set of A\, enough points on
the curve representing N\ as a function of V can be determined to permit
iterating toward the A which correspond to a given set of V via secant

interpolation. When A is so close to the value corresponding to a given
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V  that, in a neighborhood of the goal, V is a single valued function of
A and |dV/dX| is neither too large nor too small, convergence is speeded

by choosing the next value of A via Newtonian extrapolation.

Very near the equator, M\ as a function of V resembles an extremely flat
parabola and large changes in volume correspond to very small changes in A.
Consequently, determining menisci which end near the equator is numerically
difficult. Nevertheless, the strategy described above, occasionally refined
by using double precision arithmetic and extremely fine mesh spacing, with
some human intervention, successfully determined 195 of the 196 menisci

attempted in the survey reported here.

The Two Circle Algorithm

Here it is convenient to fix the elliptical tank cross section in the position
of (70). The starting point (66) for the meniscus meridian on the lower branch
of the ellipse may be specified by giving either R, = X(TZ) or Z, = Y(Tz).
Choosing the latter as parameter leads to simpler derivatives to evaluate;
however, this may not be the best choice. The contact angle prescribes the
initial direction of the curve via (67). To complete the specification of the

putative meridian, a guess for the value of A 1is needed.

The initial points on the meridian are computed from the power series expan-
sion of R and Z as functions of s, A, and Zz about the initial point.
The numerical integration is then straightforward and is continued until the
vertical distance @ (72) between the solution and the fixed ellipse turns
negative. The point at which the putative meridian crosses the ellipse is
determined by inverse cubic interpolation. The cosine of the contact angle
achieved, the volume enclosed between the meridian and the tank, and the

derivatives needed for the various alternative improvement schemes are also
computed.

The most desirable of the alternates is to improve the guess for ZL and A

by a two-dimensional Newtonian iteration scheme with the goal of simultaneously
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satisfying the contact angle condition and the requirement that the volume
have a prescribed value. Sometimes it worked. More often it diverged, but
in so doing frequently gave information about the volume and contact angle
at nearby starting points. Another alternate, which proved useful when the
contact angle was far from being satisfied, is to fix ZL and to improve A
until the approximation to the contact angle condition is satisfactory and

then to try the Newtonian iteration again.

From the experiments in attempting to develop a systematic way for choosing
starting values, enough information was gained about the relation between A
and ZE

the computation of meniscus shapes of comparable accuracy to those produced

for each of the thirteen two-circle cases in the survey to permit
automatically for the one-circle cases.

Were there a reason to construct a good two-circle algorithm, it would seem
that a combination of the second alternate with the secant interpolation used
for the one-circle case followed by a two-dimensional Newtonian iteration

when the volume was well bracketed might succeed.

Variable Mesh Spacing

In the one-circle case the mesh spacing along the free-surface near the axis
need not be fine. However, when the surface is highly curved, fine mesh
spacing is needed near the tank wall to represent the surface dccurately.
Moreover, by making it possible to pack mesh triangles into long thin regioms,
finer mesh near the tank wall has helped produce satisfactory irregular tri-

angular meshes.

The penalty term in the discretization error for using unequal mesh spacing

is proportional to the difference in lengths between adjacent intervals. Thus

meshes with intervals in a geometric progression minimize the penalty and allow
a wider mesh spacing at one end of a mesh than at the other without materially

increasing the number of points or incurring an unusually large discretization

error at any point.
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It is a simple exercise to verify that the Lagrangian interpolation coefficients
on such a mesh can be expressed in terms of the constant ratio between adjacent
intervals and the length of one of the intervals, say the first. The Adams
integration methods can be obtained by integrating a Lagrangian interpolation
polynomial (with equal mesh spacing) over the first interval in the interpola-
tion for the corrector and over the next interval for the predictor. Conse-
quently, when Adams type integration formulas are derived from a Lagrangian
interpolation polynomial on a mesh with intervals in a geometric progression,
it turns out that the coefficients are constants times the length of the
leading interval. Thus replacing an equal mesh by one in a geometric pro-
gression as the basis for an Adams type integration requires the following
additional work: a multiplication to form the current mesh length and two
extra multiplications per integration step per equation (assuming a single

correction), one each for the predictor and corrector sums.

The computation of the constant coefficients for a geometric Adams method is
easy, provided that the mesh ratio is near 1, as it should be. Here where
order four is used, the computation involves solving two three-by-three
systems accurately. Because this computation is so simple, it is relatively
easy to change the mesh ratio. To switch from one mesh ratio to another,
four recomputations of the geometric Adams coefficients are needed. Such a
procedure facilitates the development of the triangular meshes for two-circle
cases where it is desirable to pack triangles into the two corners. As to
accuracy for the cases at hand the geometric Adams methods are only a little

less satisfactory than the ordinary Adams methods.

Mesh Generation

The second major task is the development of a suitable irregular triangular
mesh within half an axial cross section of the liquid-filled region. The
goal is to obtain a mesh nearly free of obtuse triangles -- none near the
free-surface or upper tank wall. In a regular triangular mesh, lay off along
a horizontal line the number of mesh points to be used on the equilibrium
free-surface; at the left end point draw a line downward to the left; at the
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right end point leave just one triangle in the corner and again draw a line
downward to the left; finally close the figure by another horizontal line.
This parallelogram is the logical diagram; the mesh lines in the interior
and on the boundary are mapped into curved lines in the interior and on the
boundary of the half cross section of the liquid-filled region (logical into
real free-surface) by a numerical algorithm. In addition to the number of
mesh points on the free-surface and the number of mesh lines parallel to the
free-surface, the mesh spacing along the free-surface may be varied to force
more triangles into the corner near the contact angle. The details of the
mesh are controlled by prescribing the location of some of the physical
images of the logical boundary points. The camputing mesh points are the
intersections of the curved mesh lines within and on the boundaries of the

half cross section.

Figure 4 shows an irregular triangular mesh used in this study. The free~
surface and the tank wall, from the axis to the point where only two triangles
meet at the wall, correspond to the longer, horizontal sides of the parallelo-
gram; the axis and the remainder of the wall correspond to the slanting sides.
The darker lines in the interior are the images of an integral, rectangular
coordinate system used to locate vertices in the regular triangular mesh. By
mentally distorting the mesh so that all triangles are equilateral, the user

can recover g picture of the underlying logical diagram.
The ellipse with eccentricity e and unit major semi-axis

2+ (2/0)% = 1 (77)
in the { =r + iz plane is mapped onto the unit circle in the w = x + 1y

plane with the origin going into the origin and the real axis onto the real

axis by the complex function

W= kl/2 sn [(2K/ﬂ) arc sin(g/e)] (78)
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where k 1is the modulus and K the real quarter period of the Jacobian
elliptic function sn.(15’16’l7) The terminology here follows the NBS

Handbook of Mathematical Functions....(18) The inverse map
1/2
w/k _
C = e sin [(N/QK) S ([1-t2]lj1-1<2te])l/2 dt] (79)
o

which carries the unit circle back into the ellipse involves an elliptic
integral of the first kind. The evaluations of the elliptic functions and
integrals needed to effect (78) and (79) are made by algorithms derived from
those of Bulirsch(l9) and the computation of the complex inverse sine follows

Wynn.(2o)

Using (78) to map the meridian of the free-surface

C(s) = R(s) + 1 2(s)

into the unit circle produces, from the half cross section of the liquid
filled region bounded by a part of an ellipse, a standardized domain bounded
by a piece of the unit circle. Figure 5 shows the standardized dbmain for
Figure 4. A triangular mesh is produced within the standardized domain by
using an algorithm described by Winslow.(gl) The computing mesh (Figure 4)
is generated by applying the inverse map (79) to the standardized map

(Figure 5).

An obvious advantage of the standardized domains is the ease with which points
and distances on the unit circle may be described in terms of a central angle;
The decisive advantage is that experience gained in producing a suitable mesh
in one standard domain may be immediately applied to the development of meshes
within similar standardized domains. Thus meshes developed for spherical
tanks, where no mapping is necessary, have frequently served as time-saving
models of meshes for spheroidal tanks with moderate eccentricity. Because
(79) preserves angles locally but not in the larger scale of the mesh tri-

angles, a mesh that is satisfactory in the standardized domain may not be so
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when mapped into the original elliptical domain. The converse may oOCcur.
Consequently, the practical procedure is to control the mesh by prescribing
the location of some boundary points on the standardized domain and to
decide the acceptability of the mesh in terms of the number and location of

the obtuse triangles that appear in the final computing mesh.

As an example consider Figure 6, the computing mesh, and Figure T, the
standardized domain, for a typical two-circle case. In the lower tip of
Figure 7 there is a cluster of obtuse triangles near the free-surface,
marked by "O" at their centroids. These disappear in the computing mesh,

Figure 6.

The logical domain for a two-circle case is an isosceles trapezoid built

from equilateral triangles with its longer side corresponding to the free-
surface. The obtuse triangles that are marked on Figure 6 are associated

with the two corners of the trapezoid where only two triangles meet at a
boundary point. In Figure 4 there is exactly one such obtuse triangle in a
similar location. Further adjusting of the input parameters may remove such
triangles. However, experience shows that the expenditure of effort is un-
warreanted. Improvement comes slowly with change and more objectionable obtuse
triangles at the free-surface frequently appear as a consequence of the readjust-

ment.

Figure 6 shows a discernable discontinuity of thé mesh spacing along the tank
boundary at the equator. Following the broken line parallel to the darker
broken lines from the equatorial point on the tank boundary to the free-
surface locates the equatorial point there. Close examination of the mesh
spacing along the free-surface will indicate that it decreases in both
directions from the equator and in part accounts for the desirable crowding
of mesh triangles into the tips of the half cross section. The broken line
connecting the images of the equatorial points in the logical domain de-
composes the isosceles trapezoid into two unequal "right" trapezoids which

resemble the logical diagrams used in the previous report. The user
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prepares input for each half of the logical diagram separately. This input
is rotated by ﬂ/2 to the left in a special input program to allow main
mesh generation routines to operate unchanged, and a special output program

rerotates the mesh by ﬂ/2 to the right to the position illustrated.

The procedures used to control the mesh within the standardized domains are
described in the previous report.(u) They include prescribing the location
of certain control (mesh) points on the unit circle, the number of mesh
intervals in the group to be constructed between control points, and the
length of the first interval of such a group. Whenever the data permits,
the length of the mesh intervals in a group form a geometric progression;
otherwise, they are equally spaced. In addition to the parallelogram used for
Figure 4 and the isosceles trapezoid used for Figure 6, the program permits
using the right trapezoid as in the previous report. Mbreover, such
domains may be stacked on top of one another, provided that the right edge
of the stack is along a mesh line slanting downward to the left and provided

the left edge has no segments along horizontal mesh lines.

All meshes required in this survey can, in principle, be generated by the
procedure described above. Additional programming is still needed to give
more control over the location of mesh points along the unit circle to produce
satisfactory meshes for some domains that are characterized by having free-
surface and tank meridians of nearly equal length and relatively small center-
line depth. One difficulty to be overcome is already exhibited in Figures 4
and 5. The fine mesh along the upper part of the circular boundary in Figure

> maps a more widely spaced mesh along the periphery of the ellipse.

Solution of the Approximate Eigenvalue Problem

The Matrix Approximations. The introduction of surface polar normal coordi-

nates results in a new form of the free-surface boundary condition (53) and
new and easily interpretable constant contact angle conditions (54) and (59).
With
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as) = BRs ¥ (l/R2) - [(ZssRs B ZsRss)2 * (ZS/R)2]
(53) may be written as
- 2ds)), ale) 8y = (1) o (80)

Let tl and t2

]. 1Integrating (80) with respect to R ds over the interval

be mid-points of two adjacent mesh intervals [sj_l,sj]

Jtl
[tl’ta] ylelds the "balance" equation

and S.sS.
[s,5

t

t
- E{Qn]s]s=t + R[Qn]s]s=tl + Steq(s) & Rds = (1+Ba) o Steé R ds
2

1 1

and applying the "usual two-point approximations for the derivatives and making
one-point approximations for the unknown functions in the integrals yield

the finite difference equation

R(t2) R(tz) R(tl) s
- % 5 -5, @ (s 5.  S.= * S (s) R ds)
Jtl g+l g J VL g J 3-1 Ty
(81)
R(t;)
- Qn === - - @ l+B ) w S
J-1 7§ "5-1

with the two integrals to be approximated during the integration of the free-

fl
L]
-

surface. Applying the same argument over an interval [tl,sj], with 5
adjacent to the tank wall yields in view of (56) the finite difference

equation
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R(t.) ®3
1 R (A o . X
énj (s -s " St As) Ras + [sine (ds cosd dt)]szs )
u

J J-1 1
R(t,) NS , (82)
el 3 (1+B,) w S R ds
J 3 o-l t

1

as the analogue to (81) incorporating the constant contact angle boundary
condition. For the two-circle case, applying the same argument over an
interval [O’t2]’ with 55 = 0, adjacent to the tank wall yields a finite
difference equation similar to (82) but incorporating the constant contact
angle condition (59). Observe that all of the quantities needed to evaluate
the difference equations (81) and (92) can be obtained in the course of the

integration of the free-surface.

Assembling the difference equations and dividing by (1+Ba) yields a

matrix-vector equation
T -AAg=0 (83)

where
P and.gn are vectors of values approximating the potential and its

normal derivative at mesh points in the free-surface;

A is an approximation to w%

A 1is a diagonal matrix whose entries are l/2n times the

areas of the zones used to approximate the free surface; and

T 1is a tridiagonal, symmetric, irreducible matrix that approxi-
mates the differential operator on @n in the free-surface

boundary condition.

The matrix T is positive definite for all cases in this study with
Ba 2 1; it is positive definite for all but one of the two-circle cases
studied with Ba = 0; and it fails to be positive definite for all but one

of the one-circle cases studied with Ba = 0.
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The remainder of the matrix approximations are described in detail in the
previous report.(h) The only difference occurs in the two-circle case; the
condition & = O on the axis is replaced by the condition Qn = 0 on the
tank wall at one end of each mesh line. However, a brief sketch of the

arguments is included here.

At each interior mesh point the operator (50) has a seven-point finite
difference approximation connecting the potential values at six neighboring
points to the value at the central mesh point; at nonaxial boundary points
a similar approximation using only points within the closed domain can be
derived, provided the normal derivative is known.(21’22’23) On the free
surface, (83) provides the missing normal derivatives. Iet D be the
matrix approximating (50) with & = O on the axis and @n = 0 on the wall

and the free-surface. Set S_l = 2AT-1A. Partition the vector of potential

T
values as @ = [92,211
the free-surface. When D 1s partitioned conformally with ¢, the finite

--the components of 92 are values of ¢ mnot on

difference approximation to the normél mode problem takes the form

=0 (84)

Dip Doo-AS8 2

which emphasizes the role of the free-surface.

For meshes consisting entirely of acute triangles, the matrix D is symmetric,
irreducible, positive on the diagonal, nonpositive off the diagonal, diagonally
dominant and has at most seven nonzero entries in each row. Violent deviations
from acuteness change the properties of D and affect the final results markedly;
small departures from strict acuteness away from the free-surface have little
effect. The matrix S inherits its properties from T; it is tridiagonal,

symmetric, irreducible and for most cases in this study positive definite.

Because (84) can be reduced to a generalized eigenvalue problem of the form

(A - AB] @ = 0, standard theory guarantees, when B is positive definite,
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that (84) has solutions [A ,gk], k =1,2,...,n, where n 1is the number of

points on the free-surface. 2L)

When S fails to be positive definite, the numerical evidence so far
obtained and the form of S support the conjecture that it has precisely

one nonpositive eigenvalue and that the others are positive. If this

is the case, working in the space orthogonal to the eigenvector corresponding
to the nonpositive eigenvalue should restore the property of the preceding

paragraph with n reduced by one.

The Modified Wielandt Inverse Iteration. Factor the matrix S into left

and right triangular factors, S = LR, by a Cholesky decomposition modified
when the product of diagonal entries is negative to set the left diagonal to
the negative and the right diagonal to the positive value of the square root
of the gbsolute value of the offending product. When S 1is positive definite,
no modification is necessary and R = I?. When S fails to be positive

definite here, the modification takes place only for the final diagonal entries.

Multiply (84) on the left by

I O . _|1Xr o I O
, 1insert I = -1
0O R 0 L 0O L

between the matrix and the vector in (84), and carry out the matrix multipli-

cations to get an equivalent linear system

Do Dy, L b

=0 (85

RD. , RD,,L - M z

where y = 5 and z = Lflgl. As in the usual Wielandt inverse iteration(gsl
the one modified to take advantage of the form of (85) starts from a guessed
eigenvalue A\ 0) and a guessed eigenvector z ° « The latter is improved

by solving the linear system
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(1)
Doz Doy B X ° (86)

@l | .|
r,, R II) Lz z

The guess for the eigenvalue is improved by computing the Rayleigh quotient

w1 5 + M)

(0T

1) _= (87)

x(

z

and X(l) and E(l) replace K(O) and z(o) as the starting values for
the next step in the iteration. The form of the linear system (86) accounts
for the speed of the iteration. Because the leading entries in the right
side are zero, when the system is solved by a factorization method, only a
portion of the downsweep need be carried out. Moreover, because all the non-
zero entries in RD12 are in the right portion of the matrix productzlghe up-
sweep may be discontinued as soon as the corresponding values of y have

been computed.

The iteration continues until the ratio z§l)/z§0), for some fixed i, has
. 45 -

grown so large that no further improvement can be obtained (10 > is the wvalue

used here) or until the relative error (K(O)-k(l))/K(l) is so small that

further improvement is unlikely (lO_LL seems suitable for the present problems).

When the iteration converges, the approximate potential throughout the tank
9 =X is computed to obtain the values along the tank wall needed to evaluate
the lateral force and moment integrals. The approximate eigenmode H 1is

produced by solving the linear equation
Rag=("20) 2 (88)

and the approximate potential on the free-surface is determined by the matrix

multiplication
91 =Lz.
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When S 1s not positive definite and N is negative, the square root in

(88) is set to one because the eigenmode makes no sense.

Problems with B = O. On physical grounds the fundamental eigenvalue should

a®s

be zero for Ba O when the tank is spherical. A finite-difference approxi-
mation to a continuous problem can at best yield an approximation to a zero
eigenvalue. It can be shown for the one-circle problems that zero is not an
eigenvalue of the approximate problem. Here the first approximate eigenvalue
is small and positive for V = 1/8 and small and negative for V = 7/8. For
V = 1/2 +the approximation seems to be "too good"; the program quits under
circumstances that suggest that the lowest eigenvalue of the finite differ-
ence approximation is zero to within machine accuracy. Unfortunately time
has not permitted modifications to the program that would verify this hypo-

thesis.

By continuity, the fundamental eigenvalue is expected to be small for the
other spheroidal tanks. For sll but one of the single circle cases with

Ba = 0 tried in the nonspherical tanks, the program produced an approximation
for the fundamental eigenvalue. These values are small and uniformly negative.
The exceptional case seems to be another example of "too good" an approxima-
tion, like V = 1/2 1in the spherical tank. In two-circle cases with Ba =0
the program produced complete eigensystems; in one case, V = l/h, e = 0.5,
the fundamental eigenvalue turned out to be small and negative and in another,
V = 5/8, e = 0.8, wvery small and positive. At a fixed volume, as the

eccentricity of the tank increases, the fundamental eigenvalue also increases.

The pressing and unsolved problem here is to tell which of the small funda-
mental eigenvalues are truly nonzero. As eigenvalues of the finite differ-
ence problem approximating the continuous problem, they are only slightly
less accurate than those in the remainder of the study, which are uniformly
numerically acceptable. The question, therefore, would seem to center on the
discretization error committed in passing from the continuous to the finite

difference problem.
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In principle, the program can and sometimes does produce some of the higher
eigenvalues in the one-circle cases with Bd = 0, When it fails to do so,
it consistently slips back into the fundamental--even when provided with
extremely large guesses for the e igenvalues. This circumstance sugge sts
that modifying the construction of the starting eigenvector used in the
Wielandt inverse iteration would improve the performance of the program for
B = O. The fact that the chief difference between the one- and two-circle

o
programs lies in this area reinforces this view.

Evalustion of the Forced Respounse

In principle, if enough frequencies wk and corresponding eigenmodes Hk(s)
are known, the shape assumed by the perturbed free-surface H(s,e;t) in response
to a periodic lateral perturbing acceleration which has a Fourier series
expansion of the form

B, = B, Z, Cp s1n(mwot)

can be calculated by evaluating the series

cosOBtr

C
H(S,e;t) = Tl+—.BQ,T &wk Dk Hk(s) EHF?:?m_é sin(mwot) (89)
k o]

that follows from (37) with D, given by (34).

For sinusoidal perturbations, where Cl =1 and Cm =0 for m>1, the
inner sum in (89) disappears and the evaluation of the sum over k 1is straight-~
forward provided that wk % wo. The numerical problem is to be sure that
truncating the sum to the small set of natural frequencies and eigenmodes
available does not omit a physically significant part of the response. For
other perturbations, the evaluation of the inner sum presents an additional
practical problem. The terms of largest magnitude in the sum over m usually
occur for values of m near wk/wo, and this ratio grows rapidly with k.

A feasible procedure for this initial survey is to carry each sum so far
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beyond the neighborhood of wk/wo that there is no question of the convergence

of the inner sum.

Thus the main question about the results here is whether enough terms have
been included in the outer sum (89). With only 25 mesh intervals on the free
surface, the accuracy of the representation of higher eigemmodes may be
questioned. Consequently, five eigenmodes were used for the majority of the
cases. The choice of five was also based on the fact that, with 44 mesh
intervals on the free surface, doubling the number of eigenmodes from four

to eight (and halving the time step) revealed no significant change in the

computed response.

Granted that H(s,0;t) can be evaluated satisfactorily, the question arises
of when and where the maximum excursion produced by a given forcing function
appears. An approximation to the desired answer can be given by computing
H(s,OﬂQ for a large number of values of t and noting the time at which
IH(SﬂltM achieves its maximum among'the values computed. In the present
survey 30 time steps within 3/8 of the period of the fundamental or 60 time
steps within 1/2 of the period of the fundamental are used. The shape of
the perturbed surface is plotted at the time of the observed maximum and at
intervals of 5 time steps going away from the maximum in both directions.
The period of the fundamental was chosen as the unit of time to give g

uniform time scale for varying forcing frequencies W .

Because H(s,0;t) represents the deviation of the perturbed surface from the
equilibrium free-surface in the normal direction, this deviation is added
vectorially to the free-surface to produce a graph of the perturbed surface
shape in the plane © = 0 at each time plotted (cf. Figure 19). To save

the user the trouble of reflecting tke shape in the equilibrium free-surface,
the reflected shape in the plane § = m is also plotted on the same graph.

The plotted values are normalized so that the maximum amplitude of the observed
response ((89 computed with B - cose/(1+§1) set equal to 1) is equal to

t

1/10 of the length of the free-surface (su = Smax)' Thus the amplitude of the
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transverse Bond number reported in the plots is the value computed from the

relation
- . X .
(1+B,) s /10 = B Sft |a(s,0;5t)| -

This normalization is adopted to give the plots a large enough scale to make
meaningful detail visible and at the same time prevent normals from crossing
within the distance Smax/lo of the free-surface (see (3) and (23)). Thus
the free-surface can be surrounded by a grid consisting of four parallels at
distances of * 1/10 and + 1/20 of Spax® In addition the normals through
every fifth point on the free-surface starting from Smax are drawn and

labeled.

The question of whether or not the tank meridian should also be included in
the plot can be argued either way. When it is present, it clutters the graph
but does serve to emphasize that the present study is limited to small
amplitude analysis and that the scale of the plots in the normal direction is,
arbitrarily, set large to reveal detail of the computed perturbed shape.
Clearly the perturbed surface cannot cross the tank wall and must extend to
the wall when the displacement is positive at S
The present program can certainly be used (with caution) to determine whether
the computation of the perturbed shape is of enough practical use to warrant

further refinement.

Evaluation of the Mechanical Analog Parameters

Because
N+B,Z = o N
and
sitk =Y_ = bX/(l-eaxg)l/2 )
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the lateral force for the two-circle case (44) may be rewritten as

F_ = bm [-CZ H(0) - CuH(su)

+ w(l+Ba) (STu[(QXE)/(l_e2X2)l/2:] d'r) H(su)]
T4

(90)

with

Q
=
1]

2.}6 _ . [X csc@/(l—ezxe)]T:TL

S

and

Q
It

2,ﬁﬂ o [X csc@/(l—ezxe)]TzT

u

If C, is set to zero, (90) represents F_ for the one-circle case (42)

as well.

The coefficients CE and Cu must be computed at the beginning and end of
the final integration of the equilibrium free-surface. A natural form for the

approximation to the integral in (90) is

i
S * [(@xz)/(l-eaxz)l/z] ar =ZJ 8, LS (91)
Te

where J is.the set of indices that pick out values of the potential on the
tank wall from the vector of potential values at all the mesh points. The

set J and the corresponding weights Wj must be determined while the entries
in the matrix D are being assembled. However, the final evaluation of the

integral must wait until the potential is generated.
Because the tank wall is approximated by straight lines between mesh points,
a mid-point approximation seems appropriate. Let (Xl,Yl) and (X2,Y2) be two

adjacent mesh points on the tank wall with @u and @v as corresponding

potential values. Set
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X, = (xl + x2)/2
and . , 1/2
br = [(Xz - %)7 (Y, - ) ] .

Then the approximation

STZE(QXQ)/(l-eEXE)l/E] ar
1

. 2 o 2,1/2
= (Qp +3,) X Ar/2(1-e7X )

contributes the weight

/2

1
Xm? A¢/2(1-e2xm2) (92)

to each of the weights wp and W, in (91). EBach Wj, except at the ends

of the tank meridian, is the sum of two terms of the form (92). An analogous
procedure is used to compute the moment (43) or (45).

1§ =1, it turns out that

Becsuse the potential is normalized so that @T s

vV =m/2 (l+Ba) g $ R ds = ﬂ(l+Ba) wg/h .
(o] .

Thus the evaluation of the remaining mechanical analog parameters (46), (L47),

(48), and (49) is straightforward.
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RESULTS AND CONCLUSIONS

The Method

The problem of low gravity sloshing in spheroidal tanks has previously
been investigated by approximate mathematical methods and by experimental
methods. Even when surface tension forces are negligible, approximate
solutions of the governing equations are the only ones possible.(9’lo’ll)
No attempts have been made thus far to apply these methods to the case in
which surface tension forces dominate the liquid motion. Experimental work
has, with one exception, been limited to the case of zero surface tension,
and even there physical limitations prevented experiments'under conditions
where surface tension actually dominated the liquid behavior. This report
is the first attempt to study lateral sloshing in spheroidal tanks under

such conditions.

The highly curved free-surface shapes characterized by large depértures

from the horizontal plane are accurately computed here by numerical means
properly accounting for the equilibrium contact angle and, by iteration,

the liquid volume in the spheroidal tank. Solution of Laplace's equation

in the domain occupied by the liquid subject to appropriate boundary con-
ditions at the tank wall and the free surface is accomplished using a

finite difference technique on an irregular triangular mesh. Such a mesh

is space filling allowing accurate approximation of curved tank and free-
surface boundaries. The basic restriction inherent in the finite-difference

approximation is that the contact angle be nonzero.

Demonstration that the computer program can feasibly produce the desired
numerical calculations is a major result of this work. The basic program
used in this project is an adaptation of one previously developed(u) for
calculating low-g lateral sloshing in hemispherically bottomed cylindrical

tanks. The principal output from the program includes:

53

LOCKHEED MISSILES & SPACE COMPANY




1. Normal mode eigenvalues wkg 5
2. Normal mode eigenfunctions Qk H
3. Normal eigenmodes Hk 3 and
L

. Fourier coefficients, Dk .

These have been used to compute, as a Fourier series expansion, the response
to sinusoidal, square wave, and periodic pulse lateral perturbing accelera-
tions and to compute the lateral force and moment imposed on the tank by

the liquid in kth mode lateral sloshing. Where appropriate, the force and
moment can be used to compute parametérs of an equivalent spring-mass system

to facilitate engineering computations.

The Present Study

The data reported here is a survey of small amplitude linearized sloshing

in spheroidal tanks of eccentricity 0, 0.5, 0.68, and 0.8 with axial Bond
number Ba ranging from zero to 100 and relative liquid volume ranging from
1/8 to 7/8 of the tank volume. All calculations have been carried out for

a fixed contact angle of 5 degrees consistent with previous work,(h) which
allows adequate representation of small-contact-angle low-g liquid sloshing
behavior while keeping numerical difficuities inherent in the method for

very small contact angles minimal.

Figures 8-14 show the meniscus shapes considered in the study. At the higher
Bond numbers, the liquid cross section ranges from a flat puddie in the tank
bottom to a deep body enclosing a flattened bubble at the top of the tank.

At the lower Bond number, the liquid free-surface extends from the lower

into the upper hemispheroid; and, at sufficiently small liquid volume and
Bond number, the bottom of the tank is uncovered, the liquid being found in
an annular region around the equator.

Eigenvalues wbz

=

The variation of first mode (fundamental) eigenvalues as a function of Bond

number Ba and liquid volume is shown in Figure 15 and Table I. The first

2
1

for a given tank shape. The behavior of w12 , Observed here, as a function
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of liquid volume for B_ = 100 and e =0 is consistant with the known

2

behavior (1) of w1 1in a spherical tank for Ba = o (the case of zero

surface tension). For %u 25 and e =0, the values of wk2 in Table I
replace the values reported earlier (4:5) for cases in which the liquid 1lies
entirely within the lower hemisphere. The new values are consistently higher
and are more reliable because they are based upon the exact constant contact
angle condition ((27a) or (54%)) rather than upon the approximation used in the
earlier computations for the hemisphere. For %a <2 and e = 0, the effect
of the approximation in the hemisphere appears to be negligible. (Because the
constant contact angle condition used on the vertical wall was exact, the data
reported earlier (4,5) need be replaced by the present values only for %a =25
and e = O , cases with large Bond number and with small fill levels in which
the liquid lies entirely within the hemispherical bottom.) The fundamental
eigenvalue ,wle for By =0, e=0 is zero. (That it is exactly zero can
be deduced from physical considerations. The computational results presented
in Table I are, subject to the discretization error, considered to be consis-
tent with this value.)

Table I also indicates that w12 is very nearly zero in spheroids with e # 0
when the meniscus intersects the tank wall in only one circle and in some cases,
when it intersects it in two. In other two-circle cases, characterized by small
fill level and large eccentricity, wl2 is well away from zero. Note also that
first mode eigenvalues for the two-circle cases do not fall on the curves in
Figure 15. This may be explained as follows. Physically, lateral slosing in
the one-circle and two-circle cases is much different. In one-circle cases, the
motion is essentially lateral from one side to the tank to the other; the eigen-
modes are all odd. First mode sloshing in two-circle cases is circumferential
with 1liquid moving from one side of the tank to the other circumferentially;
higher modes are characterized by an almost vertical motion in each side of the
tank, and both odd and even modes (i.e. an odd or even number of equilibrium

free-surface crossings) must be considered.

The first five eignevalues wke for all cases considered are listed in Table
I. Note that all eigenvalues for a given tank shape - Bond number combina- .

tion increase with liquid volume V except for the two-circle of intersection
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cases where the higher eigenvalues decrease as liquid volume increases.

Dimensional sloshing frequencies 6k can be obtained from values in Figure

15 or Table I from the relation

/2
B, = o, ((l+Ba)G/pa3)l :

The centerline depth of liquid under the meniscus and other meniscus geometry

may be obtained from Figures 8-1k.

Eigenmodes H _

I

The normal departure of the free surface from its equilibrium shape is shown
in Figures 16-19 for six representative cases. Low Bond number and high Bond
number shapes are shown in Figures 12 and 13 to illustrate the influence of
tank shape on the eigenmodes. It is observed that the first eigenmode for the
smaller Bond numbers is generally convex up in the region 0 < s < s (Himax) R
where H ax is the maximum value of Hj ; whereas, by contrast, Hl is
generally convex down in down in this same region for Bond numbers greater
than 10. The dependence on the first eigenmode shape is not otherwise

(except for two-circle cases) greatly affected by changes in tank shape,

liquid volume, or Bond number.

Response to Lateral Perturbations

Practical application of the results of the present analysis centers on the
response of the liquid to lateral perturbing accelerations. The response to

sinusoidal perturbing accelerations is given by

N

tr . 2 k%
Hlon = Tap, Siregt I 5z Hi(s) (93)
a k=1 o -0
where Dk’ defined by (34), is the Fourier coefficient in the expansion
R = E Dkék-

For all cases in the survey, the quantities needed to evaluate (93) at
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S = 8, (at the intersection of the tank wall with the equilibrium free surface)
are tabulated for the first five modes: wk2 in Table I, D, in ITI, and
Hk(su) in ITII. (For cases in which the liquid lies entirely within the
hemispherical bottom, the present tables should be used, as pointed out above,

rather than those reported earlier (4, 5))

The forced response to sinusoidal, square wave, and periodic pulse lateral
perturbing accelerations has been calculated for representative cases. In each
case the transverse Bond number has been chosen to yield a maximum value of H
equal to 1/10 of s, = Smax + Surface-ncrmal coordinates (s,H) where s is
arclength along the free-surface and H 1is the displacement normal to the free-
surface are used in plotting (see Figure 19). On each plot a surface-normal
coordinate grid surrounds the free-surface. The lines of constant H 1in the
grid are the parallels to the free-surface at H = + Smax/10 and H= 1t s;../20
to show where the response reaches the maximum and half the maximum excursion.
The lines of constant s are the normals to the free-surface drawn through

S =0, s = spgx , and every fifth mesh point starting from Smax -+ The

normals are labeled with their s-coordinates.

The computed response of the liquid to a sinusoidal perturbing acceleration
for the two-circle case B,=1, V=3/8 and e =0.8 is shown in Figure
19. The response shown has a maximum excursion from equilibrium of l/lO of
su. The magnitude of the transverse Bond number required to force the
response to have this amplitude is given. The simple form of (93) allows

easy computation of the response to sinusoidal lateral perturbing accelera-
tions of different magnitudes and at different ratios of prerturbing to

fundamental frequency. The plot of eigenmodes for this case is also included.

The response of the liquid to any periodic lateral perturbing acceleration
is given by

~

Bt © Cmsinmw t (ok)
iy

H = — Z D, (s) & ———7r 9
6=0 "~ Tip = DS % K

o7
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where the C 's are the coefficients of the Fourier series expansion of the
lateral acce?eration. The response of liquid to square wave and periodic
pulse perturbing accelerations for the same case is shown in Figures 20 and
21 for a forcing frequency 7/10 the fundamental eigenfrequency. Four plots
are presented in each case showing the motion in the first half cycle leading
to an amplitude approximating the maximum. In the last plot for each case,
the maximum departure of the free-surface from its equilibrium shape is l/lO
the length of a meridian of the free-surface. The magnitude of the transverse
Bond number ﬁtr resulting in this displacement is noted on each plot. The
response near the maximum to sinusoidal, square wave and periodic pulse per-
turbations is given for the case Ba =5, V= 3/&, and e =0 in

Figure 22, and similarly for the case Ba =5, V= 3/&, and e = 0.8 in
Figure 23 and for B, =2, V= 3/8, and e = 0.68 in Figure 2k,

The convergence of the series expansion for the forced response to sinusoidal
lateral perturbations depends mainly on the requirement that the forcing
frequency w, be markedly gifferent from the natural frequencies w, . For

w < wl, the growth of w, with k enforces the convergence and the five
terms from Tebles II and IIT are generally sufficient to give three signifi-

cant figure accuracy.

More limitations must be imposed on the evaluation of (94). The inner series
involving the Cm's is clearly convergent, depending only on the ratio
wo/wk; However, the dominant term may occur far out in the series if

wk/wo closely approximates an integer found in the definition of the

Cm's. (In the case of square wave and periodic pulse perturbations, only
odd integers are important in this connection. ) Moreover, resonance can
occur if 0, is a submultiple of w . It may be concluded that this method
of finding the response to lateral perturbing accelerations must be used
with caution in each specific case so that difficulties arising from sub-

multiple resonances may be identified and avoided.

58

LOCKHEED MISSILES & SPACE COMPANY




The Mechanical Analog

Much emphasis has in the past been placed on finding simple approximations

to the lateral sloshing of liquids in tanks such as equivalent pendulums or
spring-mass oscillators which, in principle, impose the same force on the
tank as does the sloshing liquid. Such models are also useful in physically
interpreting the results of studies like the present work. Mechanical analog
parameters for first mode sloshing are shown in Figures 25-28. The lateral
force obtained by integrating the component of the pressure force acting
horizontally in the © = O direction is presented in Figure 25. The spring
constant of the spring-mass oscillator producing lateral forces equivalent

to first mode sloshing is shown in Figure 26. The lateral force action point
is shown in Figure 27. This quantity gives the required attachment point

of the spring-mass oscillator to produce the proper moment about the center
of the tank.

Note in Figure 25 that the lateral force imposed by the liquid as it moves
to the right (i.e. in the 6 =0 direction) is negative for smaller values
of Ba' This result arises from the fact that the liquid pressure near the
free-surface is less than that over the liquid. The integral of this pressure
depression is embodied in the first term on the right hand side of (h2). It
is observed that it is negative (i.e. it acts in the 0 =1 direction) and
offsets the inertial behavior of the liquid embodied in the second term in
(k2). As the Bond number increases, the first term diminishes, compared to
the second. When Ba = ®, only the second term found in similar analyses
restricted to the case of zero surface tension remains. For the higher
values ofEBond number considered in this study the lateral force is always

positive.

The spring constant and the mass are always positive as a consequence of
(47) and (49). Because of this, the spring constant is plotted only in the
region where the lateral force is positive. The mechanical analog is not
considered valid when a positive displacement of the right hand limb of the

free-surface results in a negative force (i.e. one directed to the left in
Figure 1).
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The magnitude of the mass in the mechanical analog may be obtained from (L49)

n
-1
-M‘- 2‘

1
1

€

The attachment point of the equivalent mechanical oscillator giving the
'proper moment is presented in Figure'27. It is observed from (43) that the
net moment imposed by liquid sloshing in a spherical tank is zero. Heuristi-
cally, this is easily confirmed by noting that the moment of pressure forces
acting anywhere in the tank is always zero because an elemental area at any

point in the tank is normal to a radius vector from the center of the tank.

This is not true, however, in spheroidal tanks of nonzero eccentricity. It
may be observed that a positive pressure acting on an element of the tank
wall to the right and below the tank's center produces a generally negative
moment (i.e. one tending to turn the tank in the clockwise direction).
Negative pressures characteristic of the lower Bond numbers will produce
generally positive moments, hence the positive wvalue of Zl noted at the
smaller liquid volumes. Increasing liquid volume allows a greater hydro-
static pressure which has a greater negative moment. Thus for larger liquid
volumes, the net moment will be negative and the value of Zq also negative.
The discontinuity between negative and positive wvalues of z4 corresponds

to the point where the lateral force in Figure 25 is zero.
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Detail at Contact Angle
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Triangular Mesh Used for B, = 30, V=g/8, and
Figure U
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Triangular Mesh Used for B,=1, V= 3/8 and e = 0.8

Figure 6
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Figure T

Conformal Map of Figure 6 into the Unit Circle

66

LOCKHEED MISSILES & SPACE COMPANY




olb-

oVCY
e

o th- e .oluh

b

VCIV'I . I'I’lll
Piiee '8"

T R usmnu

. or n.mm“‘

ot= 1.00000110° ™ _. :’(:x’—c.‘wc’nox’w'“

© cosTHOR" 3.981%0RI0
vuvv- .. uouxl& " enn v u:unn o1

* LAMe’ 4. 00000010 1 . -
vervi= '.lun-:&“r | cosTi w.9e1smx10”

U’ 3.1348ex)0 B 3.sltoxsn* ™ o

nm:& .

uu\n

v‘t/vy- . uwu &

. " l.mn
i ets 7,3581RR10

! nelw- *.0019et0™ T e e e
L % v;-u-' t.'o-r‘ uu*' o

t- i- Seemerin® ce .

v&/v . nun ."‘ *
Liweis, breysnte” .
. .

AR
oy s e s

';IF -, .‘!A"tl
L- PCTEN

-o.-——--wn-‘-i~f

REBUE S

48 -L.4‘ i .:.41

T
[
T ;
:
1T
H 1
foome i
fLL L L : = LD
OB 04 B0 00 07 B8 00 0.0 Kot LB 8.8 ted 18 88 ¥ e 149 B
e = 0.68

Meniscus Shapes at Ba



v R
S

18"

ot

s

Lhne' 8. 8130000

T e .
© LANS’ 4. 19000110'

LRl

e = 0.5

SRR T
R X
Ak :
R
O B M
HIE{E iy
T T s
S =
C i I
T s
. ;

e e

W SR

e = 0.8

8

0.5, 0.68 and O.

2

ity O

for Tanks of Eccentric

67



R |
T -
................ |n|Lv- F—
. eea®
PR S A S S O L
- s
¥5 . Bgag. ;
£i- -teaEe s
RN =
e8. .Efgg. . M
Gy cGAde. i
gg. - Ada- 13 .
. 8 . - - : 1
a5 f A =1 e
SN 'y ¢
SgER .8 3 .
N T ] ! 2
53 3 .
iiE 3 L w . :
.o "3 R ' .
. 0 23 m ‘
i3 S TR -
ivo =38
) LWk <
‘e A et -
® ! £ -
L) T J -
¢ ,.L. 5T -
e T -
i . a8 TowE -
: : -
-
1 ' Lt - -
° i A 5 < -
.In \\ —n /,/ 9
S A N -
o 1 i - -
o 4 P N N\ o
i} V A // -
Yy
AAAAA A N -
2 4 N 4/ s
v i / N s
: i 7 N\ .
At \ :
- _ \ -
. -
o I \ .
] :
o e o
. _p < 3 - % %
2 3 3 é d & & & e § ¢ § 94 LI

Meniscus Shapes at

e = 0.68

ol
W%l




. ¥ToLs, 1.000n0x10”
JE6C2 3.paseax1o

1]

+ T
+ -
!
B i
Fobobod ..
cocelid g
R .
i i
—aurfi- e Y
:

- - R Lo rh e By U PR PP SUP SEI Bo N - . - Y S ey
0.3 B8 0.3 0.6 08 08 T 0.0, 8.8 S8 8.8 1.k 48 4ea T a.s

e . ] T I
LYRC damnoae’

o | o
rece apqnonca . ) I F | ecce o pooconse
J2BaTERIR" cpathue 9.9e33exi0")

. oj
. =5 s

° o~ )
. L ("W": n

ne Pt

.,

/v

pEOS

SO G R N W

At '.-l“l'.i"i}i' e S8 0.8 8.0 0.4 0.0 06 07 8.0 B8 1.0 1.8 LR 1.3 1.4 1.0 1.0

e = 0.68 e a 0,68

1.7 L8t aee

0 for Tanks of Eccentricity 0.5 and 0.68
Figure 8b

69



L¥ILs 1. pomnoxan

000NN l‘“‘

nonunu"'“

eccs

3.9c190m107 % ¢

2.901a7K03° %"
B 1.m00010° ¢ - -

s

s

s707ax10 0}

cosThu=

pe= 1

*.25002x1!

* LAMz'3. 29280X1!
sseiex1n

00000x10

Zoe
~oi

Tter

e’

‘e’

: GO S,

e

: -

e

- P
.

- K

.

-or
-1

L YTDL=] 1,PO00OXIO’

.wmnn:::

BENERNNEEEN

Meniscus Shapes at




-0z
-1

. ¥IoLs, 1.000%0x18)

o1
-
01"

* cosTWO:' 9.98190%10

. 8.z §.opooDx10
8E: $.00000x10’

-
s

3

1855 -
SEgele. .o .
T 1 BRI
.mmmm.. ‘e
Bade

<A

ook

.
- [
Ak
"§588
S
ELHED
g3
23
B
23
ia%¢
8533
i
BEFT]
L

+00
-01

B2 1.04099%10'

e
e,
we @
oep . .
W
gg- -1
i
8. .z
ce, 2
g,
gH

£ PR

s01
o1

. 8.5 $.00000X1D

<01

= &.00000018°

* cosTRo="3.se1vemn

3
)

costinm 3,98
TSP

V7

AN
\ \

T1

8y

Fo P

= 0 for Tank of Eccentricity 0.8
Figure 8c
p-0

0

3




_ouT
Fod )

amce

'l

e

coa i, B.es u.-

!
" e
i

iR

L. . . . . %% 1,00p008100 %0

i et 7. 3021ex10""
. P .

* costHor v 9018030

e ey
£CCn 4. 87400KID
oL

! V(IV' o.um:m o
© Lhe Yl
S e s
| vEsvEe 7. 48300%) wetiun 3. ;u«nn

¢ e s.lw&u\u'

I
vesvia 8.20030

bl e, hobnlo’g“

e

verve= u.epesgu

‘.m't.hsune

‘ l- Y.aritemn’

© coatiws v acaraxo 0!
o=

h-’lsba

' un'm- . «mum
- l 3351x10"%

e-‘m o:go:m

a=0t

Cor '

L IR XY R W

e = 0,68

Meniscus Shapes at Ba =




eces l.smnn"‘ t

"Bo st v ssnnm
T LAMe'3, isouno Ba 1. g0rrIxen”

vervie v.uvu-g % enae o, !unnn
4 LMz 2,001 3x20 ‘ )- 3. 4azz2510""
Do vervrs
' Lk,

i vuvi- b. m"'% N eosmum s, iﬂunn. :
Lm- 2. (uuno i TR u-uno“" M

vL/vr- Ré :
[FENEX -
Vo -
vesvps X
LM’! 4+
vErvys :
Uhna! y ot
e B . e
visvl= :nr}uq LB uuqm RN
Lhne 0 e Ty
“d

AL
i B

-4 WY UHED SO SRR

...;‘:i..L....uvl.mxw“,.....‘4.
. i ¢ . X . $.00000%10 £ecs’ 8.40000x10™ "
o] - - .. e PR T S coulnn v. 9019007 ¢ .
....... PRI [T [ c.m *
.~ R I IS ot i_?;:;;,;'as"'°
........ Coh [ T e e
y . rol R I | vesvrs Y.avaeragy oetiur o, ‘mlnu
. g R L e L L T TP N
........ ' I} N l e i
: ! f
O — ¢+ | [ A - mvm- n um
o.e Pobs ey e
...... : i [ A A
o - - . . .. > . [ B i “‘""”"‘-}"“."‘ e
Y P! i | B= 2.00t dexsty
h g ' | i N o
o.4 P . . ‘ B i | haxzu-. "-"-‘H . ‘_‘"
o . . B | T T
.. [ ! I
° : i \ D ‘
c i [t . .
0.2 M [ . . 1 ' e
Pt P v
C v . i o e
as . tod d4d L., .
I L dododad Lo I Ty S D :
i

X

-a.e Tree, mmud"‘- - S
e s i ot . §
-7 R : - - o i..
.0} Vg L
boam ok 4
LT T L L
. ol
P S o - b -
Do
PP A [ ] I
0.1 . 8.3 0.4 B0 6.8 0.7 08 0.0 1.0 1.8

for Tanks of Eccentricity 0, 0.5, 0.68 and 0.8
Pigure 9a
73



L P o 3 s o
l" l“ [*S o 1 ek e v
1 'l ' i |
1 _L vhots §-rhaskay cherhm 9. 9332eme "
| o | ] "
.o 1 { wle s 3
i
. '
"
T -
..
. N
.. I i it N \\
LR B A \ -
B p—1—1 \ -
.
8.1 [ "
Yy
-e.
y A
A
]
7
Pases
ool
-8,
-t .

Bl Bt 6.8 0.4 0.0 6.8 0.7 68 008 18 Bel BB 5B hed el 0e8  BeT  5e8  Beb Bet

0.3

PRy P

Mensicus Shapes at

)sz/D« ouT



N M
TTT171 i
| T s
| K
“ K]
K
!
L .
r -
b [ ]
v £ -
L
&3
i gl 28" gt
P e
rEeT
REEL :
lgu]
3B E AR X
; |88 & :
s H-E 3
B3 BN o
e E -
walm (3E4
FagPTEEEw 2
s -
{ ]
-
- <
" L
-
.
: ~
-
*
L]
-
-
b
.
\ -
1 ...
i} .
3
"
-
- I3
[ ?
{

.

i E

AR AN
FE CiE .
g1t m
=t i
- PSS - K :
gai 3
B R
~ e . i—‘
13 -
. a0 :
% 3
i *
i :

g

. 2] .
-e :
. 1 Il
.
- "‘h
ahait -2
-, -
e ; :
- e s .
, e
o <
5 X
- | L]
—- : : -
lllllll .t
- 1
- 3
-t -
: -3
"
-

ty 0.8

1Cl

1 for Tank of Eccentr

a:

3

Figure 9b

15

- Ut
¥y

Fold



VEsure 7.30204xs00
Liue 2 32358000

v vie t.abrivaie
a1, s3mano PO

LA LI N T XL COMTHUY, 9.98133:000'
L LAMe 149387 o 1,003’
heaint 1 R TV g

Tt vtsvke .00a0bmd™®  clathus o beraeie ™ ¢
4 19 Ll O L e rus .o

L ORpE b ridev

biokeokusb"®

1.0 R e e e e e e .
. PN Coa iy a4 L. iergoopona0™®
R Vo . . mex voaserenio™®  exee o.eesoon
Py P . v PSR T SN ! cosTmor 9. 96190100 ¢ - o B
.. P o i Lol L. e .
[ vervrs sooarsenin ™ | cognus
s Coe 4 ‘Lo Lio='3.03885x16° 0 ° 3o 1.1v9%10 -
. 7. 38e7Rxep e 9. 9eesexio™!
b : ! .520bex10"” T Ba Y. 2vetenn*® - ¢ -
. . S s

“8% 14193010

vy
—
byt
L
v
i
=t

_ .

. S O O [

N R

- l I

SN ORI i YO W W o Th L6 G e L‘.!._L_.J:..

e = 0.68

Meniscus Shapes at Boz

2




Ve Vs 0.83308 isae
- Lhwe* 3. ¥300010 co. -
P ) - —due Srsonne L .
| wt= 0.00008m10"" oo r.edesraie™®

i o ...mas" ciaR

'l
..,. .. uulnl | zue s, im0
ol oy e m ama

) ZLe-R.093e0

ve/vie 5.00000me-% | contmm s.wgegeme

Ak 1,02912310 LR
=0 -o1

A2 0. ovoomxie™™ |

Z)2-3.0m338x

=9
ey A —cca e ';31-'
LiAwz t.vsomen ":' B2 3. 9039710

(XD dusvni CRER u-uno

w -

VE/VE B, uulnh COBTHU= 9.993¢0m ¢ b

TAWET BT 3 eTHINVIO T Amme -
Ate §.3231030°"" L 2m 3,

wLe Q.om‘ T paes. neeene” Y
vtexke b zha - -
Lt 01030 .1 unuu.u.
uu- B __’ 1 8 Yo A w0
\ P H .
w/vys &
\humL0. BO0DS:
T
/LT cboebiv
0.8 4
I \
.
-8 i
. . I S W
i |
¥ T M *
-a.0 + + + .
! N o
N + ——
; 1’1 i b I T ;
JORY SO0 0 N A R T L] Lyl
6ai 08 0.8 08 8B 8.8 ¥ B8 13 1.8 1.8 68 o7 5.8 e aie

H : H ped :.ou;w;m °:' ...... - seor
i mw— vaemmne ™ L : i
. H “ 4 b e e mle e e .. :
o ve/vin . eavenns L Thus 3. se0naxi0”0" P
AR TR rettrry ‘ » l.m.u"" Co e e !
.x..§ I A - hadd I I
.. I V- . SR
e : e ol
i vt s -
i I LA- . thx\ :
i- * LR e Sy
4 .
. o
' .af-i
i
i
B ' I LYY S S
AT : R T
e : oef-
v v
- o \
] — .
Vi /. f T
vivies Ty H M ..t
7 - T : J 1/
y i 5. .
"
ALY i
A = 44
‘ — AV
‘4 P {
= = 2 ’
) $omat & et '
I I - ;.—:_!.. [
r L ‘

PR N N Y g ~-L 1.3 _4_
X T ¥ I Y ¥ e arsey

b
}. e =0.8
'

1.8 1.7

for Tanks of Eccentricity

Figure 10

0, 0.5, 0.68 and 0.8

7



Cod-ouT

A
IR T
7 T 0 aobm 8~ = churhust o Doggeset 1 -
ag b.risebe ¥
(g
] i -
T T
; T !
i ; : .
e L i L lia 1] ..
W ANPIZNN s 8.5 0.6 0.7 0.0 18 1.3 4.8 4, Y

LA 0x0

i ve/vyn 3.00e08x18

-8.a

wesvte t.unv::.:
—

CuTIME 9.984TRE T
¥, el

T
RUm_ 0. 893400
Ags §,00000K10°

A ad

N Tl T T T

| 208, 3TIRI0E

COBTIU, 9.08L80 M
[ e s.eunn-‘“
* g woss3ean
+ Bs-s.ssmsamn

! cberine’ .
8 .8.300080D

e

Meniscus Shapes at

—~
ot S e s
R



nks of Eccentricity 0, 0.5, 0.68 and 0.8

igure 11
FDI/D"DU'T
o

e @8 BuopreppteY vt
M 800

/ Vivies.

/-

.nu.u. }
yARY |
ey

e T Ep—

T fLe-s.se019m8

vt donnnnmpe® | coatim sogigenme™
AN §,04007 I8 o= .10

L s,00p0k10°%0 |
94 6.00000x10" €CCs §.40008%10
* ¢ cosTeoe s.amsmne™ .. Lo L.

| i

vervie .'.l'll”lma- " coamium v.sapgueie®t
L' g, 00ebaxt ™ * Bu viasoramin®™ ¢ ¢

. L IO T O 0 I O By O O O A O Ll
00 6107 1utT N7 N a e ey “u!o |fo“'.l.-

e = 0.8

9



S \
A -.-Jonb i
vErvie poaveriaapy T
apn "o F |
R 3 e w, n!lvllu": i 1
v on 8 senrame ™. L
\ ol n.nounn.a i ;
»
- ’ -
v ?
k. H
G t
l
. }
Yna b
1 1
RS
e T L1 Lii

_ 1
.v--o.vun €0 8.8 8.7 8.8 8.0 8.8 Bud 8.8 ReB  Teh  BeB  Lel  So¥  8eb  8e8 Sew

e=0U

mnv- '.nn.nl
orovrn® ™

. .

i
el T T I T

G e 87 00 60 18 fd LR 55 Ld 8P 58 LT 46 4.0 RS

e = 0.68

Meniscus Shapes at Ba = 10 f

- OU
Foul)_w



Figure 12

p-out

costmu

LI WA 1T

NS

8.0t -

0,9}
0.0}
0.8

0.0

~0.8
0.0

e vm BB
Wi v.m»q."‘“ oaho

COBTHU

TN
e LR
. stons

: uv- sataepusnt

L T

.
toe e

R TR T 1 e

80- o.u

o8 THys

LR PO

SRR YT Do
tue Boaranrare’ ™

T

?r Tanks of Eccentricity 0, 0.5, 0.68 and 0.8
|
!

2

L)

Tvryres.e

" _._r.A._.. am e vtl'vh )

et i GARL 8
t Ays §.a808
» innh“'

.o
Lo

.-mmr“ .
T y--8a 1.a8essms”

il
e

81



o

LD- ouN

+F |

. mue 0.08008m10" " ne a.zeenrue

N UTx 2. 38013 (_. COMTRU=. 3.290582087,
! LAws 3.17500m0° ' s |.~muv.a

A b ltulul " :\l- i.-n.aa‘b 4

n--..'l.-‘.
- —t
0.8 veoged 25020 “" .
ubll».""‘..!r B 9.0
s il g ll os *
« ' :
|
RV .nmq‘“—"mm TN
O B T
.t i- ; bk o b 5
; AL RO S
N .
b L
| H L R .
i i [
i [
i i
N, | i

V"ﬂ.“u

Meniscus Shapes at Boz

30



” ! v “:H— ol Inllr I

>y svle b, nsh™®) ]
4 BN
A X 19"

L T L S v S S Sy aarvr )

-0t
. Gmmu: s.arpanme’ "t
e 11

*u1e
-

cosTHUs .9sjgeme
sTraesmene e .

.o,

] o0}

TN ) T TP L R O
\ "% e ele " als Teie " els $6 B0 e 1 e ae T ale

for Tanks of Eccentrieity 0, 0.5, 0.68 and 0.8
Figure 13 '

D\/D’ DUt
IF2

&



o~

O\

' 9 hd ol i 1 e
andd & 11 3 e
‘ e =
-..t 1 5.—4 _ n [ e .'r Ao _T
2 aha; -] RS e
f ek bttt ppn e
A ed oh
-e. L
VvIse. . Vi VEFV[= f-aprabuy, : -
4

“8.v|

T N

T86 6.7 8.8 8.8 1.8 bt

8 1.8 e

P T SR,

CoaThus' B,

VE/VTe Rabasiiag,

AW

we 8.00000m0°""

CORTHUR 8.9
N

oy
ne

e S

NCANEA. LR

Lawe, v, 7404

L s itiisnd

e = 0.68

Meniscus Shapes

Rt
oo bt

P
.

-

o




i
! B Ik Jl : 1
| ——
) gt S 0N R 1O T S S Y S S S
) b - - - - ! F b
i T
sny-d o ale ! LY 5.0 0.9 e as [YORr ¥ vy '|..J"‘.a Ny ]EoLnL ‘i!-

¥IgLE, 1.poopext
(]

h b !
. comThu s.eesgeme Y
-r *
Zive-h Sl N B
-‘—-?fﬁJ Bk taseeme ™
S G HE] "
] i _coatiem s.oopeme . |
il ¥ 8 B.1%evemo O .
n e e
a“ iaes
et NI
AL Ll It i R ‘—‘—:&m:r_‘;‘n-n -
AYS §.ab 0] Zus-p.o8ror D "t t
i ATswe
f e .
b +
— .
t . 0 S W ) 1 0
! .6 60 5.8 Gal G0 849
)
!
e = 0,8

for Tanks of Eccentricity O, 0.5, 0.68 and 0.8
| Figure 14

(DLD"’DU’T 85
*2.






o
O
\

" T T T ] T T 1T T ]

o Liquid Volume, V = 7/8 / / Iiquid Volume, V = 7/8

o]

— e =0 /”/h = I.,

2 % R A
a b /e g
v /2508 Vs
" A V-
g 1.0 %?/// / %éi/ o

1/8

%’ %/ //;/////

5

[w

éﬂ 023 // 4 % ///

; Y

3] T 0

' 0 g 10 100 O M 10 100

Bond Number, Ba Bond Number, Ba

mcﬁ

a 2.0

o]

;B

Z Liquid Volume, V = 7/8 /
gt 05 o Lo //Vﬁ‘ N /

H 5/8 Liquid Volume, V = 7(@
al L /"/ T _ T 73/l
3"' 4%3/28’ e = 0.8 A/E{S
¢ 1.0 ’///;7'//’1/h‘ ;)/ i;/3/8
! -

7/'7/// i ?Z%//?
2 1/2] -

f 0-5 /////A /// /Z//{/}{C/

yol

E /////:;5/// ! /////// /1)’//

] N |
0 1 10 100 o A} 10 100

Bond Number, B, Bond Number, B,
Fundamental Eigenvalue as a Function of B o and V for Tanks of Eccentricity

0, 0.5, 0.68, and 0.8 (Two circle eigenvalues are circled)
Figure 15 87

LOCKHEED MISSILES & SPACE COMPANY




9T 2anFTd
g0=23 ‘0=A ‘2=2 f0=5 $0=A ‘T="g 07 sadwug spomuedTH

0§ ;o O8AVANLCT & (5 IVIIMO D, OFXETOSI R & (‘Y 1VIRO @ g OBXOPENLCT = (05 HVI3NO 0 o ,08%60112°F = (*¥ yvOdnD
L pgoOtERSEICIL & (R IVAIMO X o0 QEXECESH'C ® ("B IVAINO O o OVXOINEZ'E & (3 2VIIC A g OBAERRINIL T P IVAMO X g OIXOSE29'C £ ("2 )VIIM0 O 10 DASELINTL = (71 1VInT
SWAWGNITSE  °006P3 3000 L = S1XV WOf¥K ., OSNOO000°#e SIXV MONIN Q08* & ALIDTHINIDDF WYL SIVAWIINLTSE  “OOSEE 3Q0D.. V= SIXV WOf¥m o 01X0000G"T= S1XY WONEW OGO = ALIDIWINIIZD £V
000V IPOSLY T = (XVHEIIWANS U4 4O NINGT 006 & IMIT0A  EINNE° & (VIMLIND 3 & ‘On OWO9 oae 2266°T = (XVNS)IIVIMNE JTNJ SO MDY OGEC = InAT0A  G1966° T (VAIMLISOd 3 T ‘Cu g
COWHLINDT DWW IVANE 33 SA (W VAINOI IN' 2/ CEMVLD (SIMLNTT WY IIVIUNE FIud SA (W ¥IINO) INIVANIDII/ ¢ 1N VLI SIOHNIII
B st o0t $2'0 080 30 L o6s 3y 00t €0 060 nn.e. , o
UG N SO R 1 TN N N T T T T TN U e O I (s v I I T T T T T T T O O I __
4 - [~ yo.08%08°3-
“ H 109500~
] -
1 -
{18 _ [ ]
4 N [
4 S
] - /
] B e /
4
] s o1s 3
J m. +0.08100°8 to-
1 M 10.08me %L
- ] :
_ 30006
[~ oo.08m0"%
00,0188°8 h ™ 1o 08080
L L K
TTrrryrrrvrrrrrrrrrrrryrrror1ryrvrorea 01208 °% U M 1 L T N LI 1 1 .
s ] s “e [ 1) had o5y sa°t oot s20 %o 20

LOCKHEED MISSILES & SPACE COMPANY

88



s

B3N L » ('€ IVOINO

LU UL A I ]

80 =

°

VOO O, OFXVORNE‘Y @ (‘¥ 1VIINO

X g OtXTOPINIT & (‘T IVOIMO O 0 OUXEECIOSE 3 (3 )VOINO

aoe
SIVANDINT'EE  ‘OCIT 300 2T ¥ UKV MOF¥A o GIXCO0GO°Sr $IXY WONIN  008° = AL131NINIIIY wivi
00 OVHTIEEGTT u (XVMEIIIVAUNE 22WJ 40 HIMIT  COS' % JMAI0A  ET966° 3 (VIINLIE0D 008 3 ‘OGN GNO®
(R1HINIY DUV IIVIUNG FINs A ((W) VIINO) IATVANIAII/ { (W) V13) $IOONNIS1I
L3 (78 ©so sa0 .
[N TSRO [N U N A O TN A O A Iy SV O O |
. —~
1 |-
{8 -
- —
= —
H
T r r. 1 1t 1t v t 1 1 T °t— T "1 1 771
- sive o5 €3 [}

LT a3ty
=2 ‘C*0=A ‘00T = dm 03 sodwyg spomuslTy

30.01X00¢4=

el LU

O g DIX6L166°9 = ('S IVAINO O 0 OUXCSLVG'S = (*y ,¥2340
A gne  G999C & (*CIVAMO X 0 OIXCICUSZ 3 (T IVIINO O o0 GINLESZT2E T (°1 ) vaked
SIVAMIINICEZ  ‘00S6 2000 T = GIXV WOfYH 00,0V X00000 T2 SIXY WONIN GGG* = ALIDI81KII2T wivy
00 OPXOESE0E & (XWWE)IIVIUNS FIu4 JO WINIT 0O = INNIOA  61966° = (VIIMLISOD  GOI = gy cHe
(SIMANIT DWW IDVINNG 3304 SA (N YIINOI INWANIII/ ( (¥ ¥4 $30500301)
ooy €40 o0 $2'0
LN TS T S TN Vs s T O oy D O

//_»/

o0t s1'0 oo ) 20 °

00.01%00" 3=

10-03X00°5=

10.91%00°¢

00-0800°%

H [ oos0tx0s°y

89

LOCKHEED MISSILES & SPACE COMPANY



g1 2amITd

g0o=9 ‘Cro=A ‘2= Gm Go=9 “'0=A ‘T= Bm x0J sadwyg opomrs3TH

L @ o O8XR0PTLT & (S IVOIMO O o OFXGTNT T & (P JVIIMO
OIxge * ol M {1010 04 ‘P IVIING 10¢ $0¢
e Iy ¢ ..”-“-“-”»”:”u o" “.uoﬂuh u .-.”“”“Mn”.u . ..“ “u““ “ 8.“““.-H.u ” ”.. v A g OVNIOEEZSL B (°€ IVIIMO X o0 OTNESREE 8 (‘3 )VAIMO O o OFXIEENSTH 5 (°F )VOIMO
- ‘ e o to- SWAGINISEE  "ODEYY 2000 3 = S1XV NOPYH OIXGZOPN 8= §1XV WONIW  D06° ® ALIDTWANIID] wivs
SIVANIUIND *EE “63T03 2003, T = BNV WOFfVK u?ﬂ-ki.' SIXV WONIN 008° x ALIDIWINIDI] avi R aﬂn- N R .
GIXICOBICY ® (XVNE)IOVANNE JIUJ 4O WISNIT  SITC = IMNIOA  GIS6E° = (VIINLISOD ‘3 = “CN ONOD 00 CVALISINTT & (XVNEIIVJWNG 2204 SO HINOT  ODEC ® IO\ OGNS B (VML P ® ‘0N OwA
o0, ’ 13
(SIWIONGT DUV IOVJNNS 23W4 A (W VIINO) INTWANIITI/ { (%) VA3) $IO0MNI 1D . .-:.”"M.. o uuabsh..u-u-u “ :E«w-ﬂ.ﬂ.! _uehﬂ:b.go.oaou.a o
oot si'0 X s3'0 [3
[ RN R R T TR D N T R D O I I A e 3 O Y O T T T T 1 1 U [ 5 5 N N O s e |
T ) N
1008083~
-ﬂnl-u’-|

.7 -

+o9%me 8
-HII-'-U
- — -
10.0%)00°8
19.97X00"8
B -
1 —
1 [~ yo.08¥08°2
19.98500°¢ r
i -
N H{ go-0%wo°s
ae.OR08°S TTrrrrrrr1r 1 rr1r 1y rr1rrrrrrrrrrr i rrric
- a8t = o3 : s2-0 “o s2°0

LOCKHEED MISSILES & SPACE COMPANY

90




vi1Lssacenadh
(%) o

] (%1 -n wrs .. uae . |
IR Dt F U S W S O TR U T Wl S T T O VRN T U T T YU U T TS T . W 190810 {
1T H
|
- 4
[RTTIC | s.amee'™ ‘
100010700 | [ tom
- -
ro3m0™ : [_resonag™™ ‘
soomig™t | |_s.ooree'™ |
i : @
20000 _| _s.o00s™
- - |
- L ¢
. N . |
] \ -~ 1
- - i
. ~ |
~a.p0ns0™" | .o
TTrTTT7rTrTrrrirT it TiTiTd UL ULV L
o.25 0.3 o8 1.0 .29 19

’V
oo
fo

CHGOMOOES (ETA(R )1 7E1CENVALUE IOMIEA TR ) V8 PREE SURFACE MC LOKTHIS)
BONO MOy 3 f.  COMITMETA) = 99813 VOLUWE 2 .373 LDGTH OF PREE SURFACLISWAX} =  1.30823x10°%° 1
Tas CCCOMRICITY = .00 WINOR AXIS 3.00000K10°°!  WAR AXIS 2 1.  CODE 16373.  4a.INTERVALS
OMEGAT 3.0 5 3.90330010°00 O  OMEEAC o) = 2.ozeeTxan®® & OMEIA( 3.0 & 3.2003610°%° v
OnteAl 4.0 v 6:78407110°%° O OMEUAC 300 & 1.31781%38°% @ LOWIH 10 EAUATOR = @ asTesTAG"S?

(a)

’
L Ty prass |

188

ACIPOME OF FREE SURFACE 70 LATERA. PTRTURSATION « S1MUSOI0
OMEGATD) 70 SOMESA(S) = .43gX10" 0} OO = 14373,
AERIOD 3 2eP1/OMEEALY) 8 1.783610°00  TINE INCRDMDMT = 7.47axs0"®}
W0z WAXTHUN ANPLETUOE & +308 (SNAX) 3 1.908110°70  MPLITUDE OF TRAMBYERSE SOWO WO, = 7.0vex10™"®
CURYED GALD LINES ARE AT CQUAL NONWAL DISTANCES (WM:'W/2,0)<M&/R,=t) FRON CRUILIBRIUN PREE SURPACE
STRAIGHT GAIO LINES AT WRWALS TO SURFACE AT LABLED 3-vALUDS

(e) |

3
.
3
.
2
.

Liquid Response to Sinuso
B,=1, V= 3/8,



vitnesscanes
008 ouLe

8 .35

e

N0 . 4.

WLUE .38

cecoaRIcITY
~e0

-y
HENOA 0. 000
NAJR 3,000

CoutLIIRIUN

44 INTORVALS

450

5. 1omeg™
w
% 13w30™ %

toromio™

2 aamag*t

3 1am0* ™
roumioy
CorrICioNN.
x o

n o "o
=00 | [N SN B A A ‘lﬂl?ﬂ-lusm

1o 1.3r10"™®
. ~oR

T T T L1 1
1ol

o8 ()
SIBWOLD
COO u 38373,

.ss [ 30
REIPGMC OF FREE SURFACE TO LATERAL PERTIRGATIONS ~
OMECA(O) ® .TD OMEGALL) & R.430%10°0%
PERIOO & 20P1/OMECAL) = 1.783x10°00  TINE 1NCRDNENT = 7.47axi0™%
s WAXIMA MPLITVOR = IOKISNAR) = $.308X10° 00  ASLITUOE OF TRAMVENSE 8080 W0, & 7.eser10 "%
CURVED GA10 LINES AT AT COUL NORWR. DISTANCES OB/INE. 8 ~10M R, 480 FHON COUELIBAIUN FREE HURFACT
STRAIGNT GAID LINES ME IORWALS 10 HURFACE AT LARED $-vALUDY

(v)

VE10/3Cec0
| 00 ouae

3.-3. o™
4 9.00010""
9.5 00mn30™ %
Setorrgnag ™
7. tomerre™™
o8

‘bna 0 L.
F"

ars

wes
"ion 000
NAXN $.000

I 1n U
RET Sunrace
DaT A
ine Snex 40"
i
pcTa

M. INTERVALS

9 00

e
3 sowmag™ ™
1
.20m10°%®

R T

N T g
1. 044210

fosamaa*t

3. 110m10*%
oI
orricin.

°

1.3rax20"®
3

idal Lateral Perturbing Acceleration

d e =0.8, f = 0.
an , for wo/wl 0.7

Figure 19

FolD-ouT

o

790

W u MARIMM AWELETUDE & L300 (SMAX) & §.808X10" 01

Dho.bag
L)
RESPONIT OF PREE SURFACE TO

OMECA (Ol & +70 SOMIGALL) = R.452

TIne/PErico """'j'.‘l'

Vi108/3¢C 02t
000 0ok

BN 0. 3.

voLueE .33
ccconTaICITY
0

oo
“hoR 0.800
AR 3.000

ToviLtoa iU

FRCC SURFALC

LDGTH (BuaK)
1.508%30

TETA 3 DB

a4 ITORYALS

w
s.1omye™™
™
S.a9me™
L3 .
teromag %
o
~s.nmie™®

FrEwBcI
% ouema

10 3.308010°%%
2. z.e2mx10"®
3. 3.20ex10°%
s s.71010°%°
5. 1.31m10°
s. 1.0eax10"®
7. 2.aamic*®
s 3.120010"%
romitn
woricibae
x °

e 1.373x10"®
~on

LX)

T O O il
o7 % e
LATERAL PENTURBATIONS =  S1NSUSOLD
o o0 + 10378,

PORICO & 2w 1/ONEEALL) o 1.793K10" 00

TIME INCREWDNT o 7.47ax20" %}

APLITUOE OF TRAMIVERSE SoM0 W0, o 7.epex1o™®®

CURYED GRID LINEY ARE AT TQUAL NORMAL OTSTANCES (1M, MN/R4 0 ~Hu/Ry =HM) FROM CRVILIBATIUM PREE SURPACE
STRAIGHT CRIO LINES ARE NORNALD TO SURFACE AT LABLED 8-vALUES

for

(a)

(RN o

91



vitnesstined-
wWoe ek

s 1.381

1:108

3!

L

8

OMD WO. e

oLweE .39

eccenTascity
0
Axes
HHOR G.000
MAJOR §.000

CoviLIentw
RET 3w ace
LOATH Buaxt
1.30m10°%°
"eTa s om

a4 TTERVALS

~e230

17t
- 750

=1 1| boa |

028
REIAONSE OF FREE SURFACE TO LATENAL PERTURSATIONS -
OMGCAID) & .70 SOMECALL) 2 2iaseXao Ot
PERIOD » ZeP1/OMESAIL) 3 1.793x10"0)
W w NAXIMOM ANPLITUOE & . 100 (3WAX) ® 3. 908X20" 0}

STRALENT GRID LINES ART MOAMALS TO SURFACE AT LABLED S-VALUES

(a)

Fow-ouT

Seuant wave
PULSE WITWPERKOD & .300  CODE = 16379,
TIN IREENT » 7.4rgaag Ot
APLITVOE OF TRAMVERSE BOMO MO» s 3.777x30" %
CURYED GRID LINES ANC AT EQUAL HORWAL DISTANCED (W0,10W/2:0sov'2s~190) FRON TRUTL LORIUN FRED MAPACE

5.a5ma0" 0
w

3. 19m30”%8 ¢
~

1. 70m 4002
n

~s.muexa0™

2
t3
L
4
8.
™

reemxin*®
3.20010°®
(327 Ted
1y 0
10400t
LOE XYY § 08
o: 3.310010°%
Foumton
orricions
. °

10 137414090

L1 TINE/PERKD 1.083%10
o ST I O Y NN i v e T M e

s
3.-3. 00exa0" %

4 ss0nae™®

-t.00en10™

g3 b
Z !
- 8 1351 !
oo |
= A
- 1,108
[
i L;
20 | b
- T
- " )
— R |»
« »
2
. "
.
- 2
—no |
- L
- s
- H
~evom | -
| 2ee M
¢
'_ m oh
e | el N Treponon peepsacio™®h |
o8 L] ) ) ]

ATSACHIT OF FPREE SURFACE 7O LATERA. PERTURBATIONS = SIUMAE WAVE
OMESAID) 3 .70 SOMEGA(L) 3 2.458X10°00  PLSE WIDTWPERICO » 4300 COOK » 16378,
PERTQO » 2ePT/ONEGALS) » l-f.“l‘m TINE INCRDENT = Y-Wl.."
18 NAXIMUN AMPLITUOE & 4100 (ONAX) 5 1.006X10°00 . AMPLITUDE OF TAAMIVERSE BONO WO, = $.77Ix10"%%
CURVED SA1D LINCS ART AT CaUAL NORWAL DESTANCES (W W0/R:D)=100/R) -Wt) FROM ERVILIBRTUN PALE SURFACE
STRATONT GATO LINES ARE NORWALS TO BURPACE AT LABLED 3-VALUDS

(e)

Liquid Response to Square

B, =1, V=3/8,



-190

Vitoa/acaned.
000 bose
BOND 3.t
L L3S
feconTRICtty
)

ey
INR 0.800
AR 1,000

CeuiLitmivn
FREC surace
LOGTH (BuAX)
150830 %
wera s oce

4. INTDAVALS

490

H

9. 19 10"

)

1.70m 19700

~s.aumie™

B R T

o 1.0am10*0t
70 2.asm10*Ot
o 3. 110030°
FomIOn
corFFicID.
. 0

10 33741100

IR v NN AT I N N S S R A T WA et s el nr f B
(2 ) [ Y )

33 ) -0
RLIPOMIE OF FREE SURFACE TO LATERAL PERTURBATIONS =  SQUARE WAVE
ORCAID) & 70 SOMEXA(Y) B "9 sasg *.500 COOE » 38373,
PERIOD 3 2P1/OMECA(D) 3 1,793¢10°00  TINE INADMENT & 7.47a130" T
s MALTMN APLITUOE 3 100 (BNAY) 3 1.308X30° 00  MOLITUDE OF TAAMYERAE Gow® 40. = 5.777a10"2%

le.~3.3am010" %

LTSN 2T ed
7. teoeenin™

CURYED GA1D LINCD ME AT OV IOARAL BISTANCED C06 1002000 toW s 08 FRON EWVELIBHIUN PREX HRPACE o ., comn1g-0b
STRAIEHT SR10 LINES ME KRS TO MRFACE AT LARLED $-vALUGH
(v)
vi10e/8Cenm vitoesscaned
000 008 wo0o oale
L - e z 113 . ] BOND WO. L 0
Lo 373 OLWE 378
couTareery - 8 e reconTatenTY
»00 oo | ‘0
L) | ~Ts
ninR 000 “inoR 0.000
BAIR §.00D F HAOR 1.000
- 1.108
IL1eR T EaulL iomion
X Mt - FRCE Sumrace
NoTH (hmaN) a0 L LDKTH (SMAX)
som g0 130010
LINY Y TeTA 3 o0
. ITORVALS b . TOVALS
[ -~
T W] - 39w~
v
<13msg ot I~ s.13m0°0t
- LS
Tomso | » 1.708x 30”54
a
%10~ - “s.mmx10™%t
—ase |
= oot
R OMEGA
- hand 1. 350810700
- H 2. 2.02mx10"®
3. 3.2010°%
-000
I~ a%
— Te R.aaSNLO
o 3.210010°08
1) Foumion
- COEPFICIONS
|- . = °
p 00
Tivey » S .t
b | | Kbl 4 14 il oo sarae-oe
. ) 3 a
.83 3.3 co0e0”*

RESPONSE OF FREK SURPACE TO LATERA. PERTURBATIONS = SQUMIT WAVE
OMECA(Q) 3 +70 SOMDGA(L) = 3 3
AERIOD 3 SWPT/ONITALL) = 1.7a3010" 00
W HANIM AWPLTTUOC & +100(0MAX) & 4, gosxqG™O}

PASE

® o500  CODE = 18378,
TINE INGREONT » 7.470x20°0%
APLITUOC OF TRAMVERSE 800 WO. = 5. 777R10"%8

CURYED GAI0 LINCS ARG AT CRUAL NORNAL DISTANGER () 10020 Oy =N/ R <bN) FRON CAVILIBATUM PREE SunPce
STRAIGHT CR10 LINES ART NORNALS TO BURFPACE AT LABLED S-YALUDE

(a)

Wave Lateral Perturbing Acceleration for
and e = 0.8, for wo/wl = 0.7
Figure 20
95



vitoeseteced-
LOUB 0049
= T30 B0 WO. .
WA 318
I 1,351 EcconaicaTy
00 | ...
- [
WINOR ©. 900
= nAKR 3.000
- 10108
COUTL IR
B PRCE SuwrAcE
L . LOKTH tavan)
1. 30m10°%
MeTA 5 o
v o tNTORVALS
- S |w
b [RYTI
[N
B s.aamao
— -~
l_ o 1.70010°%
o
- ~s.muaxao™ Ot
~ago |
= rtwocie
R OMDNA
— aid 1. 3.30m157%%
- 2 2.02x00*'®
3. 3.20810°%
L 4. s 710030"®
~t00 | 2. 13m0’
n 6. 1 0eam1o"™
— L WYt Ml
Ll ’-Il’l‘.'
- 2w Fomim
cworricions
— - s L
e | PR N S T T U W U WA N T T U0 WY W v st v u Y epeblai
[ % 0 ) ) ity
ACIPOMIT OF FREE SURFACE 10 LATDAA. PERTURSATION - PERLODIC PUST -
OMESAID) ® .70 a "0 sust ® 008 CODE = 16378

PONIO = 2eP1/OMECA(S) ® 1.793K10°%0 TINE INCADONT = 7.472r10°00
"t e MATINUN MPLITUOE <100 (SNAX) = 1.508K10" 9% MELITUE OF TRANSVERSE B0MD 4O = 3. seenio’™®
CURVED GA10 LINDS ART AT CAUAL NORWAL DISTANCES O, MW/2:0h -0V Br~0t) FRON DAVILIGAIUN FREC SUMPACE o .y onexss™™*
STRALGHT GAID LINES ART HORNALS TO SUAFACE AT LAMED S-YALVES

(s)

o D

-89

O 124 TINU/PERICO sp. il
sl ol

70 Kowhool L1 {1 4 4 1 ¢ 1 t 1 1 3} 3 41
YT %) [ 3] 1,00 129

RCPOMIE OF FREE SURFACE TO LATERAL PERTURBATIONS ~ #ERIODIC PUSE
OMESAID) 3 .TD SOMEGA(L) = 2.458%30° 00  PULIE WIDTWPERIOD = .003  COOE = 1637S.
PIRIOO = 2WI/OMEGACY) = 1.793x10°00  TAME IMCREMDNT = 7.argnag”®t
Wn WARTMUN AMPLITUOE & (10S(SMAX) & 1,508830°00  AMPLITUDE OF TRANSYERSZ S0MD HO. » 3.seex10°™®
CURVED GATO LINES ARE AT LQUAL NORMAL OISTANCES (W1,MW/2.0:-WA/: <M} FRON CRVILIBRIUM FREE SURFACE
BTRALGHT CRID LINES ARE NORNALE TO BURFACE AT LABLED $-vALUDS

(c)

Liquid Response to Periodic

=4, = 8,
FoLb- DUT Pt b Vo

4



vitoe/sCenade
“oe  cove

M0 W, 3.
Lvee  .3rs

E’“"‘f:

' MINOR 0. 000
MAJR 1.000

¢
un 1w
WET suwract
MeTh tBuA)
4. 5082 30° %"

META 8 OOS
J: INTERVALS

w
s.asma™t
v
s 13m0
L
8. voma0™%8
v
ER T P

mEWOCIo
| owsa
3.s0m10"
| 2. eamran*®
v llmlﬂ.‘
[T T
1.38710°0
1. 04a10"
, Reaamao*t
R M
oIty
oErPiCIENTS
. ®
1373030
R T e
~3.c0ana0"
[
U ey
“terrsmag™™
1.00exs0"
RIRCYE ot

- S 1.381

- 3. 108

vitcesscecadh

o008 Cos
NG WO, 1 8
vouuee .37
(S
.0

~es
“INoR ©.800
MAXA 3.000

CQUlIL 1emiuN

mEE U e

LOGTR (SuAx)
130810 %

YA 3 0%

44, INTORVALS

3. 9m10"
v

3. 1330”8
~

1.70m20"%*
n
~s.mrax10"%

ewocio

X omcA

1. 3.30310°
2. 2.e2ex10°%®
3. 3.20m10°®
o 0.720x00°®
5. 1.317x10"02
6. 3.04ax10°
7. 2.443%10"0"
6. 3.130x10°%
Foumioy
oTTiCioN

3. t.373%30

x 0
00
o

1Y
=150 | O R T U S T S S WO O T i i ot ol
> 0.29 .90 - - T
RESPONIE OF FALE SIRFACE TO LATERAL PENTURBATIONS = PERIOOSC PULSE
OMEGAIG) 3 .70 SOMEGA(S) @ 2.432010°0%  PULIE VIOIVAERIOD = 008  CODE = 36373,
PERIOD = ZoP1/OMEGA(S) & 1.703110°00  T1ME INCREMONT = 7.472x20°0%
98 MAKINUN AMRLITUDE 3 L1OMTBNAT) & 3.508%10°00  APLITUOE OF TRAMSVERSC G0N0 1O = 3.3ew10"™®
CUNYED GAT0 LINES ART AT ERUML NORWAL GIBTANCED fH0t:10/R¢ 0, <4V 2, 496 FROW COULLIGRIUN PREC SURFACE .
STRAIONT GRID LINES ARE HORWALS TO SURFACE AT LARLCD S-YALUE

(b)

3.43.092x10"%
4 20310
3.-3.s0ex10"%
R P et
7o 1.tzesin™™
s-1.08an10"%

viuerscecede
1400 00as

BOND MO, 3.
o .37y
ETCONTATCTTY

“0

axes
MINGA D.600
MAXR 4,000

EQULL10RTUM

FREC SumFact

LOKTH (Suax)
1. 308810

THETA 3 ODB

44. INTERVALS

s 1smag™ %

=750

.28

2.2

s.13m10™%t

2

1.708x30”%
a
RN It

mewocto
LY OMEGA

1. 3.50m107%8
2. 2.e22x10’™®
3. s.20¢ ‘%0
4. 8. r10010"0
3. 1.31m10°%
6. 1.040x10°%
7. 2.4ax10°0t
o 3.13010°08
rountex
corFricions
® L]

[ T

%0

v . ot
TN Y S S S U Y i i el ot vl ol

.73 100 1.38

RESFONIE OF FREE SURFACE TO LATERAL PERTURBATIONS = PERIGOIC PULSE
OMEGA(D) & +TO SOMECA(1) » 2.492%10°7"  PWULIE WIDTW/PERIOD = .005  CODC o 18373,
PERLCO 8 2PT/OMECAH) w 1.783030°00  TiME AINCREMENT u 7.a7ax10”0}
" WATIMUN AMPLITUDE 8 0100 (SMAX) & 3.308X10°7)  APLITUDE OF TRAMGYERSE BOMO HO. = 3.seae30’™®
CURVED GRID LINES MRE AT ENUAL NORMAL DISTANGES (M, H/R, O, ~H4/Z, M) FRON EAULLIBRIUN FRET SURFACE
STRALGAT GRID LINES ME MORMALS TO SURFACE AT LABLED 3-VALUES

ulse Iateral Perturbing Acceleration for
nd e = 0.8 for wo/wl = 0.7

Figure 21

(obD’Ol[r
# 2

(4,

b2, -3, 3arna0” %
3.-3. 002010
9. 90010"

3.-3.000x10"%¢
RN Y el
7o t.onen1e”®
LRI o

95




(%1 .rs
1anme’™® It YT T S B PO S T W D L U
B

1.0m10"% |

rsoag® | |_v.saxaa™
somag® | |_9.omeg™™®

.-
2500070 | |_x.0000™™
. 3 e

2301070 _| EX 1 a

T T T LT T T 10

0,23 0! .73
EIGENMODES (ETA(R) ) /EIGENVALUE (OMEGA (K1) V8 FREE SURFACE ARC LENGTH(S

UMD WO, = 5. COSITHETA) * .99619 VOLUME = ,730 LEWGTM OF FREC SURFACE(SMAX) = 1.1e963x10°%®

TAIR ECCENTRICITY = .000  MINGR AXIS 31.00000%10°%°  MAJOR AXiS.» 1,

CODE 2730, 23, INTERVALS

OMEAt 100 ¥ 1,00078x10°%0 O OMCGAC 2.0 = 4.230010°%0 ¥  OMEGAC 3.3 = T.ouseInsn®® v

ouEGAt 4.1 = 1.20373010%%0 @ oMERAC 5.0 v 1.Tieesn0™ @

(a)

o

v X o
VRNV RN WA N TN WY VUM S W TR SO WOUN MR SUUNE M ot vt By i |

.28 0.5 .78 1,00

RESEONGE OF PREE SURFACE TO LATERAL FERTURBATIONS =  SQUARE WAVE
CEGAID) = . TO SOMICAIL) = Y-SI'IIU-M PULSE WIOTH/PERIOD = .500 CODE » 27%0.
FERICO = 2w l/OMEGA(E) = 5.790010°%0  TIME INROMENT = 3.620K10°0%
W n MAKIMUM AMILITUDE 2 LJORISMAX) % 1,169%10°00  AWLITUDE OF TRANSVERSE BOMD MO. = 3.42Ex10™0t
CURYVED GRID LINES ART AT COUAL NOAMAL DISTANCES (MM, NM/R, 0, ~MM/2,~i0) FROM ZRUILIBRIUM FACE SURFACE
BTRATGHT GRID LINCE ARE NORMALS TO SURFACE AT LASLED S-vALUES

(e)
Maximum Response to Sinus
Perturbing Accele

and e =



U1104/5Can2 0
000 0137

8200 WO, 8.

wLe  Lrse

cccenTRICITY
o0

ancs
MIMOK 1,000
AR 1.000

CouIL1oRIM

FACT 3uarace

LOETH 1SMAX)
12010

THCTA 8 D%
23, INtERVALS

L
s s1im10™
)
v.seexs0™%t
LS

0.0oox10™0*

a
s.38m10"%

FREQENCILS

L3

onca
1.000x10"®
4.29x10°%°

3. r.913010°®
4. 1. 229010°%
5. 179010

1 1 1 1 1 1 l ] i 1 1 | 1 ! 11 | L

roum1ER
COLFF LCIENTS
o

.28 % [ %71

RESFONBE OF FREL SURFACE TO LATERAL PERTURBATIONS ~ SINSUSOLD

OMECA (D) = .70 *OMEGA (1) = 7,993X10

TINE/PERID -:.clzsm"“‘ 1. s.30ex10"0!
-oe
Tt d.rsana
T3
4or. et
3.-0. 140010

2sx10"%F
a3

oo0E = g730.

PERIOD = 2I/OMEGALY) = 5,702x10°%0  TIMC INCROEWT 3 .ezorio"™

M4 T MAXTMUM AMFLITUOE = 100 (3MAX) = §.189

APLITUDE OF TRAMIVIRSE GOND WO, » 4.3%x10 0!

CLVRVED ¢RI0 LINES ART AT COUAL NORMAL ODISTAMCES (1900,900/2,0, ~MN/R, ~WM) FROM DOUILIGAIUM FREE SUATACE

STRALGHT GR1ID LINES ARE HORMALS TO SURFACE AT LABLED S-vALUCS
(b)

Vi1nesacanse
weo 0133

[T N N

oLeE 7

EEONTRICITY
<00
axrs
Wi 1,000
AR 1,000 .

CousL ton 1L
FRET SURFACE
LEk T (anan)
1.109

nETA 5 006

23, INTERVALS

L]

e simio™™
w
ersemreeil—
n

o.oom10”%
n

3.50m10"%®

FREQUENCIES

X oz
. t.os10°®
4.2t
. 7.913x10°%0
« t.aesmie®™™
RERZT T

T RTTS d

>idal, Square Wave, and Periodic Pulse
rations for Boz =5, V =3/,
0 for wo/wl = 0.7

Figure 22

‘/D—ouT
Fo iy

Ges3Lenss
00 0172

[EL NN S

LU€  .r%0

ECCENTRICITY
.00

Axes
“INOR 1,000
AR 1.000

COUIL ISRl

FRCC SURFACE

LOKTH (SMAR)
118910

THCTA 3 OcE

23. INTORVALS

. s19010°0!
w
7.38mx10"0t
"
0.000x10”%*
n
3.36ex10"%¢

3. 7.915x10°%
4. 1.283x10°%!

3. 1.728x10°%

TIMEEERICO s2.araNy "ot

T OO NN N U it

L
7 0.83 0.5

[} 1.0

REIFONSE OF FREE SURFACE TO LATERAL PERTURBATIONS = PERIOOIC PUSE

CHEGA(O) 2 1 TO SOMEGALL) % 7.393x107 0t

FERICD 3 2WP1/OMEGA (1) = S.792x10° %0

T AT AIRLTTUOE @ 100 (3HAX) = 1.309K10" %}

FULSE WIDTH/PERICO = .0D8  COOK = 2780,
TIME INCREMENT = 3.e20x10°0%
AMPLITUOE OF TRAMBVEASE BONO NO. & 2.498x10°%}

CURVED GAID LIIES ARE AT COUAL HOAMAL DISTANCES (WM MM/R, 0, ~MM/Z, =M} FROM RQUILIBRIUM FALE SURFACE
STNATCHT CRID LINCS ARE NORMALS TO BURFACE AT LABLED B~vALUCS

(d)

roamioy

0OF 11008
x o

1. ¢.30ex10”%t

2, 3.734m10" %
3




ka-owT

r1oesscendd
o200 oooe

(Y] (%Y . 1.
. ) W T S UG SN SN SR TR U S TR TR S N S '
tocue® B H | e.oonie*™ ‘
!
4
‘
1.90230°% | _1.50000°®
1.0m10™% _| | t.omse™®
s.om10™®t _| |_s.omi0™®
. Sl e
-9.0mm10™ ~s.omie™™
[ L VL L L L O L L e e e P )

X (L
uem:oc.;m:mn/tun«u.mmuml . -
DD D, 3 3, COM(THETA) 2 .99819 WVOLUML 2 730 LENGTN OF FREC SURFACE(NAX) »  1.13108x10°%°
T CCCENTRICITY » .000  WIWOR AX1S %.00000x10°7)  WAJR AXIS = 5. COOE @730,  25.INTERVALS
oMTeat 1.0 % 7.63028x10° 0 O OMECAL £.) » 4.37442x10'T X OMESAL 3.0 » e.eet90urn’® v
OMEGAt 4.3 ® 1.3404310°00 O oOwEcA¢ 3.1 = 1, 07008010 @

(a)

[<

~01
[ SN SN W SN WA VN N NS NN SR N B ki B R g
0.89 0.5 o7y 1.08
RESAONIE OF FREE SURFACE TO LATERAL PERTURBATIONS -  SQUANT WAVE
ONECAD) 3 .70 SOMEGA(]) & !-‘llllﬂ.m PLSE WIDTH/PENICO = .500 COBE = @730,
FORICO & 2eP1/OMESAN) » 0.234X10°%  TINE INRDNENT = 3. 104x10"0t
W8 HAXTHUM ABLITUDE % L100(BHAX) ¥ 1.131x10°70  ALITUDE OF TRANSVERSE SOND NO. = 1.443x10"®) i
CURVED GRID LINCS ANE AT COUM. NORWAL DISTANCES (MW, HW/R,0y-H/R,~Hot) FROM LOUILTBRIUN FREE SURFACT
STRATENT GR1D LINES AT NORMALS TO SURFACE AT LABLED 3-VALUES

[©)

Maximum Response to Sinusoic
Perturbing Accelera:

and e = 0,

1

|
\
<
4
1
|
4
1
\




vt19as3canach
o0 OvIs

[ SN N

wLeT L7130

eeeenTRICITY
.s0

AxCS
NINOR 0,800
MAXR 1,000

cauIL 1At

racec surrace

LOETH 13max)
1.191210°®

THETA 3 Oo%
23. INTORVALS

L.
4.835x10”
v
3.310x20"
LY
o. oo™t

n
“t.e3m10°%

oKt
" oA

1. v.e3ari0™
2. o.574x10°™®
3. o.003110°®
o 1.300m10"%
3. 1.e70m10°

™ 100 w3.e2310"
T RS W N R N N N A S T S A S e |
.29 [ X ] L 7] 1.00
RESPONSE OF FREE SURFACE TO LATERAL PERTURBATIONS ~ SINSUSOI0
OMCGA (D) = ,70 GOMEGAIL) = ’-“l"" OO0 = ¢730.

PERICO = 20P1/OMEGACH) 3 6.234110°%  TINC INCRDON = 3.1e8x10°0%
0 E AT APLITUOE 3 L A0A(SHAX) % 1.131010°00  AWPLITUDE OF TRANSVERSZ BOWD MO, & 2.101x10°0%
CURVED GRID LINCS ARC AT CHUAL NORWAL DISTANCES MW, NW/2,0,1W/2, -1 TRON CRUILIBRIUN PREE SUMACE
STRATGAT GRIO LINES ART NORWALS 10 SUMACE AT LABLED S-VALUES

$.-0.101x10™

()

Ur19esacanes.
6000 0033

E N

we .t

sevTmicaTy
«90

3

A1OR 0,600

AR 4,000

JLIONI
T surace
%TH (BRAX)
L131m10°®

iTa 8 OCo
. INTCRVALB

Le33n10"0F
‘S1ex10

.oom10™%*

e ™

al, Square Wave, and Periodic Pulse
;ions for Boz =5, V=3/4

8 for wo/wl = 0.7

Figure 23

~-pu'v
o2

i 1 i

RN N TN SN DA EEN WU TR S A SN N N OO |

ERIC0 *2. 37 IX1!

©v119973Canedh
000 004

[ =0T N N

wNnC 730

ECCONTRICTTY
-0

axes
MIHOR 0,600
HAJOR 1,000

CouILIBRT

FACT SURFACT

LOGTH D
1.131x10° %

THETA 3 DEG

23, INTERVALS

v
4833107
n
3.31ex10"%*
Lx
0.o010™%t
n
~1.637x10° 00

FrEQUENCICS
" omA

1. T.e30m10"t
2. 4.374x10°%@
3. s.e83110"™®
4. 1.3ex10°0
s. 1.e79 Ot

Founten

oo IcIENTS
L3 o
1. 7.esex10"0

o.28 .90 (X
NESPONSE OF FREE SURFACE TO LATERAL PERTURDATIONS = PERIOOIC PWLSE

MECAD) = .70 SOMECA(1} » 5.341x10°00  PULSE WIDTWRERIOO 3 003  COOC = 8730,
FENIOD ® 2ep1/OMEGA(1) B 8.234x10°%0  TIME INCREMENT s §.14ex30"00

MY AXIUN AWLITUOE ® 0K (BNAX) T 1,131K10°00  AMPLITUOE OF TRANBVENSE-80FO MO, % 1.12ex10°0%
CURVED CA10 LINES ANE AT CRUAL NORMAL DISTANCES (HM,HW/B,0, /R, <) FAGH ERUILIBRIUM PREE SURFACE

STRAIGHT GRIO LINCS ARC NORNALE TO SURFACE AT LABLED $-VALUKS

(a)

2. 2.033x10"™
3.-1.000x30" %
o 3.0e7x10”®
s.sa0m0™™

99



U'1108/9C400
0.2% .90 T.78 1.90 1.8% 1.39 0000 GO’y
l‘J_AllllllIllllllleAlxll
fu
roooxe™® | [ _rosomie™
|
!
- 1
,v“l‘m - _’-nl““ !
i
1
2.9m30™% | | _z.some™™
. /SN -
. |
|
~e.box10™® _| )_-.I-Iit'..
T T T TP r T T Trrriry T i TTrTrT i T TTTrrTT
0.28 0.%0 0.78 1.00 1.2 1.%
€ (LAY ve ) VB FREE SURFACE ARC LOGTH(S)
0010 WO, = £, COS(THETA) = 93618  VOLUME = .373  LENGTH OF FREE SUNACE(SWAX) = 1.508 OO
TAIR CCCENTRICITY = 500 WINOR AXIS .66029110°00  MAJA AXIS ® 3. ° COOE 22375,  33.INTERVALS
oMEGAT 1.0 % 7,42067010°00 0 OMEGA( 2.3 ® 3.3134310°% x  OWEeA( 3.0 & €.73erex10’™ v
omteat 6.0 & 1.00e77x10’? 0 oweeat 5. 2 t.seirokso®™ @
(a)
A
e |

ﬁouD ouT

w

1

. 218

e g -la.mm"" i

Y- G S U R NS NN NN NN U AN S [V S I | W
0.2 0.5 .78 1.00 N
ACSROMIE OF FREC SURFACE TO LATERAL FERTURSATIONS =  SQUARE WAVE .
OMEGA(0) % .70 SOMEGA(E) = 5.198X10°70  PULSE WIDTH/AERIOD ® L300  COOE » 22378, s

FERICD = 20F1/0MECAC) = 0,080 TIMG INCREMENT = 3.207x10"0

e MAXINUM AFLITUDE 2 L106(SRAX) = 1.302x10°00  AWFLITUOE OF TRANSVERSE BONO NO. = 1.99411070!
CURVCO GRIO LINCS ARE AT COUAL NORMAL DISTANCES (W1, W/2,0,~WH/2, -} FRON EQUILIBATUN FAEE SURFACE
STRAILGHT GAID LINCS ANC NOANALS TO SURFACE AT LABLED 8-VALUES

(c)
Meximum Response to Sinusoidal,

Perturbing Accelersation

0.5 f

and e

Fig



vi1oesscanich
o000 oars

T oW, 2.
.. L «373

cccentRICITY
50

axes
MINOR T, 88q
HAXR 1,000

250 1200 ToulL 1oR LM
TRCC 3uaract
! . LOGTH (Smax)
1. 508x10°

™oTA 9 oo

33, INTERVALR

R |n
a.arsx10"08
1,078 2v

a.39ex10"M
"

0. oo 10”9
ES
~4.e77x107t

~.a%0 rReaocio
R oA

. rae O
2. 3.313%30°%
3. 8.73810°°
4. 1.008x10"%}
s, 1.501x10"%

FOURTER
ICoLFTICION
L3 °
Teroy 3050100 1. w.onexsn
1 L 1 NER S i
088 .50 [X7] 1.9 o
ACSPONSE OF FREE SURFACE s LATERAL PERTURBATIONS ~ SINSUSOID

o1

3.-8.418x10
4 1.087x00"%
HEGAD) 2 170 SOHEGATL) ® $,136X10 co0E = 2mI7S. 3.-3.913x10°%
PERICO 3 2H1/OMEEAL) = 0.400x10°%0  TINE INCROWNT = 5.207x10°00
o3 MAXIMN AMPLITUOE © (100 SHAX) = 1.3RX10°01  AWPLITUOE OF TRANSVERSE 8OWD 4O, » 2.¢2x100!
CURVED GRID LINCS ARE AT TUAL NORMAL DISTANCES (WH,WC/Z,0,-WU/2, i) FROM COUTLIBRTIM FREE SURFACE
STRAIGHT GRID LINES ART NORWALS TO SURFACE AT LABLED S~vALUES

(b)
U19Das8C anrhe nunust-ﬂrlulv_L
mon o b
oo w2 4[-2_'__" Bl . e,
e L3es 0 | EEATL s 1
BCEHTRICEHTY CCCONTRICITY
| .50 5o
kes axes
| MINoA DL 088 im0 008
[ HAsR 1,000 MAJR 1,000
‘ ;
wiLIsRI %0 1.203 TauIL [BRILM
hex sumrace FRIT SURFACT
b LOGTH (smax}
). s0ex10°® 1.508010°%
WA 3 oo THCTA 3 OO
i'. oRvaLs 35, INTERVALS
L ap
#.arsx10”0t - a.arsxin%
v 1,078 2
) +3ax30~0t «. 39621070t
LY
-
u.o0oxs0™! o.00010™
L a
aermig™® ~a.677x10°04
‘
REWOK LB o280 FREVOCIES
oo X o
t.as O 1. 7.azex10"0t
3.31910° 2. 3.313010"%®
o.790x10"® 3. 6.736x10°%®
01 2. 1.098x10°%
1008130
1.801x10* " 3. 1.981x10°%!
-+ 900
i FOMTER
oErrICIDTS coerrIcIDn
°
-0t TIMEPERIOD 22, S00v10. 0!
ostio_ S N TS N U N VY N T s i ol
.Y’IID-“ .28 0.%0 .79 1.00
AN 3
N n:,“:-m RESAONST OF FREE SURFACE TO LATERAL PERTURBATIONS ~ PERIODIC PULSE
».918%10°0% OMLGA (D) % .70 SOMEGA(1) ® 3,198x10°°"  PULSE WIOTH/FERIOD ® 008  COOE = 22373, 3.-3.913010°%

ECRICO = Z#F1/0META(L) = 8.460x10" 0 TIME INCREMENT = 3.207x1070)
WS wAXieUM ALITUDE B (108(SMAK) ® 1,502 O AMPLITUDE OF TRANIVERSE BOWD NO. = 3.333x10°™0
CLAVED GA1D LINES ARC AT EQUAL NORMAL DESTANCES (hi,MM/Z,0,~M/Z,~WH) FROH EQUILIBAIUM FREE SURFACE
STRAIHT GRED LINES ANE NORMALS TO SURFACE AT LABLED 8-VALUCS

(d)
Square Wave, and Periodic Pulse

for Boz =2, V=3/8,
T a)o/a)l = 0.7
e 24
101

ptD-ouT
4k



0.5

o | - o B
o o n [cH .u
y P g 9
/] /] L © ~ S 5
S £
[AIRRN NN 5 N 3
- g = ™ ~O
-o, ﬂ 2 v £ _ lrfMV el
o // // l o // &y
r— / W_ A/ o O
g T~ N
o N = N R
_ _ =
o g
3
3
—
. & \m wn Y] —t
\ vd ’ o l.l/../
\ /!I[ M /I//
/r N VO T
N = N N\
% N 3 ™~ N\
i / ~N—] =
it R —— mw
Ba ™ I - [T \
_ o
o 2 o ~ — ~ —~ w o
8 — l o o ! 1 =
— ' i
Ty Ty
Mb\ d= "4 ¢soxoq uiysoTg TBIS}ET SPOW ISITJ.

G; D-ouT



' i ——
- B, = 100
/
A P
/
| [ || A
f S
1 yd
/
|
2
A
]
1
I/
0 1/2 1

, Liquid Volume

-
-

———

B e

P

)
N

N

N

| ’

7

e

| Mode Sloshing in Spheroidal Tanks
0, 0.5, 0.68 and 0.8

|

gure 25
i

i LD-ouT
Fo H2

30

- —

-—

1/2

Liquid Volume

/
]

\"1\

105






92 2JnST4
g°0 PuB 99°0 ‘60 ‘O
SOTQTOTIQUS00Y JO syuwl, TepToasydg ur SBurysoTs Telsne]
SPOW 3SJIT4 JO FoTeuy JOFJBTTIOSQ SsSeW-3urads J03 jueyisuo) Jutadg

sumToA PInbI] JumTop PInbTT - sumToA PINbIT auntch prebry
T /T 0 T 2/t 0 T 2/t 0 T 2/t 0 o
] | \
I \
7z : /
= & \ — ; 1°0
: [ \\ \ / \\\
- i ; 7 7
- G - v ¥ yd - G
\ .~ ~ .ﬂ\ . NN . |H
L g «
¢ / \\\\\\ \ \\ /
[ [ 0T 0T 7] OT- i 4
n 1 7 .. - 7 [~ ]
— 0T ] 7 ) 7
ot N - \\\\\ o€ .\\w | e \\ oT
[ 0f [ —T— S 1/ < |
\ /{I\
7
v £ -
< v a
1~ 0 - _ O \\ Bt.l
oo < ° ootz " | [ [ ffcor- T AL PO

105

¢queqsuo) Sutadg SpOW ISITH
LOCKHEED MISSILES & SPACE COMPANY

Ty



sumTop PTNbTT

moo @Qﬁ Nmmoo ﬂmoo
suB] TEPTOIaydg UT BUTYSOTS SPOW 3SITd J0J JUIOJ UOTIOY 90J04 TeIS}e]

/T
/ o
ON|
g ot-
e _Aoe | oot .
¢ | \\
e
T ¢ ="g
. 2 | o
g0 =

2 sandta

aumToA PINBTT

g/t

/

oT /o€

—— T —T o0t

SOTHTOTIUSOOT YFTH

Vu
P4
<«
[+
s
sumToA PTNDTT w
2/1 W
0, W
/ |/ H
'R
/ - )
| o | et 0
| ==—00L|, , o
" 1
A7V | % :
/| _— @
/ o s
q OT = g fo)
A w
2 T
Y
¢ v
G0 =2 m

8

—




zovgny” No.om.m. T0+288°  TOMET m.
20+992°  ZORTAT®  TOWMN9"  TOWMST
2o+ 152 ZOWMET'  TOWGTO®  TORTAT: 7 2006900 ZOPTENT  20WMIZT  TOMILGT  TOSTIZ® L
20+292°  2O+6ET"  TOHOZY" T0+5TT* T 00T 20e925T  ZOSMOE'  2O+GST*  TOHOOL"  TOMEQT" 9
200SENT 2005520 ZOSOETT  TO+IZ9T  TOMOST q
. ZoR2EN”  Z0+BS2T ZOVEETT TOSTEST  TOPGET 2 oot
Nosmm. wo.ﬁ_. 20+€MTT° S,mmﬂ. L
20+1€9°  20v062° 2O+TOT-  TOMSTT’
20+08*  20+€22°  TO+STR" 0+ 221" M_ £Or LT 20+126° 20+2TY” 20o+gET" TO+9LT" L
R B SE e o e mow i Bev o
20¢695°  20+252°  TO+ERR® . . . : : .
% s 8 oo-Le t o 200626°  20+L6N°  20+TEZT  TOMIERT  TOMRT z o
COROTT"  2O+66N°  2OMEST  TOHQTL' 9
20+TE6® 204200 2O+ GIT* Ho.m:. s EOP6TE"  EOHMIT"  20+G69°  20+602°  TOWMT® L
20+L8L°  2OvlEE"  2O+EOT" 00~16" € €0+612° €OrETT” 2oeLoN* 20+TST" TO+HLET" 9
20+GELT  ZOMMECT  T0+086° 00-506° ¢ m%mmw Mw.'mmm“ Mﬂmmmu wwnwﬂ” Mwﬂmw” m
506" 2ONZ9ET  TOWLG 00-5¢8 t ot COv6ET°  ZOv6RE"  20ROM  20e2TL"  TO#20T 1 ot
mwﬂm—%” MW%M. w%m%“ i) M £Or22N  COWSTZT  20+268°  200€52°  TOHSIT l
COrloT- SO 20WST-  00-99g° 3 €O+S62°  COWOST®  20+129°  20+TQT°  TO+QIL’ 9
g e - . fole o mel odr mor
EOH6OT"  20:SOTT  TOGTLET  00°Te9* E 5 £OHM9Z*  €ORLZT'  2008N°  2OR2ZTT 00026 1 s
. . . Z0vgrzt .
. e, ooz XEL ) CONS6S”  COWEEZ®  COVIZTT  20+S26°  00-0L6* L
CONTET  S0eoTs  SOWOET- 00709 H COrE6E"  COvO8T™  20e9@L° 2048027 0O-2N6" 9
COr0oT- 2005  ZOWOTT:  00-255° ¢ COWSTE"  £OVOST™  2OMEZ9”  2OMEQT™  00-289° S
COTels  somoN-  Tosz6r  oo-gn: 5 z €oOMize  EOHETT  ZOWETST  ZO+GRT"  00-g6L° 3
forEge"  COWSET"  ZOWLOS™  T0+TT”  0O-E9L z
EOWMECT  COREST™  ZOPTMS®  20+6TT°  00-S2L' 1 2
£OeMIT:  20¢EL9°  ZOWMOT’ 00+ 67" S
L e . et 3 €OVE6O"  EOMMIET  EOMGETT  ZOWO9(*  00-T2l' L
€0+90T"  20eS9E"  TOWILLT  OO+SOC 2 P N LS ey NS H
G0e9E6T  OTOET  TorogsT OO T ! COIOET  CONGET"  OSTET  ZORlOTT  00-U9S° 2 T
wags L oo
200690 Z0€OT-  TONORT:  TO-€0T- - o €Or202°  20+€T°  20+G€2°  TONT9ET  20-MET" 1 0
D
n € e T3 opwde ui  o/¥Be" 5 i ¢ ¢ R ..o gl < Mt uaum!nnu 4
o %o = " sonrwauad emntop PYOBYT ol puod [ 90/o(°e+7)1. %0 = o senTwauebia o e
Aumm-c\bh BT, W = TRAURS T v-l¢ ]
soaI83p ¢ = @ soaxBap G = @
Q=23

§0=2



20+€89° 20+6QN°  20+lET"
ZOPSI®  20+292°  20+GET"
20+02" 2O+IMR"  20+TET"
2OLT®  2OPEMC”  20+G2T°
€0rSTZ°  COPETI  20+Q6N"
COFTET” 20+I0L°  20+9TE"
2oHiNg:  2O+6SN"  20+LT2°
No.mhﬁ. 20+6TH°  20+56T°
20¢905°  20+l9N°  20+ysT
ORI €O+NTZ*  20¢906°
€0r252°  EOFIET"  20+195°
€OLEQT" 20¥6€Q° 20+SSE°
€OPTHL® 20+v22L°  20+O0E"
€OPTLS" €O+E62°  EO+E2T°
€0+05€°  €0+0RT"  2O+TSL°
€OHL2: EOP6ET" 20+ELS”
€O+6T2°  EOFTIT"  20+6MM°
€OFTET" 20+MNG* 20+89€°
COVTOT”  20+9SL°  20+6L2°
€0y92Q° €O+TAN"  EO+MLT
COHETS" €OvgS2  £O+1OT
€O+TLE" €OMNQT"  20+98L°
€OrEE2"  €0RZNT™ 20+ U€5°
€OVIQL” 2002TL°  20+MTR*
NOHNOT"  €0+[2S°  €0+L12"
€0rggS”  €OeCE2" EORLTL”
COFTEN" €O+602°  20+M08°
€O+ELT" 20065L°  2O+TLZ®
€0+922°  20+M6"  20+60E°
€OPENE®  €ORLET  2ORSTH"
€0rL2€°  €0#29T°  20+OL9*
€Or29€°  €ORGOT"  20+009°
€0egTN®  €0r2QT°  20+029°
€0+g0S” EOFET2* 20+269°
£Or6TL" £O+6g2°  20+208°

s n €

wle

TO+506°
ToeNTg°
ToeEQS”
TOe6ES"

2Oo+65T"
20+90T*
TO+gEL”
TO+T95"
TO+965°

20+€92°
20099%°
2oeTOT®
Tor628°

Z0+ENE”
20+602"
2OrSST"
20+QTT"
T 616"
T0+659°

20+
20+Nle
20+58T"
20+2ET"
TO+06€*

20+685°
SOHOE”
SorT0e*
TO+889"
T0+9L9"
T0+608°

SO+E4T"
SO+iay

oy’
SOHEST”
sOr9LT”

[4

ssaxdsp G =@

*g*'0C pue g9°0 ‘G*0 ‘0 £3TOTIIULD0Y JO
syur], Teproxsyds JoJ sonTeAUaITH SUTUSOTS TBI=3eT

ToeSNT*
10+22T"
TO+60T"
00+1Mg*

00+915"
oor2M°
00+95¢€ *
oo+6lz:
T0-LTL°

00w TLE®
00,90€°
0ogie -
00+E2T"
Q0+NTT*
00+90T*

T0-908"
20T
O0+TeT*
00+06T"
00+512°
00+0T2 "

=13

uu\RentCuNMm = Nul sanTeAuslTE

83I83p § = @

80 = 2

NN 1~ - FANND O~ N MW - MO0~ ~NAO - N~

TR ¥ AR

syyuste uy o/ v90-"g
euntop PTNbYT *

ot

0

puog

I aTqel

20+09%°
SOHETE”
20+9T2*
200g52°
20+662°

20+566°
zorges’
20+ 1LY
Zoeisn”
200065°

€0r 881"
20+L28°
eoe€L”
20v99L°

€O+T9T"
€orL2T"
€0 LOT°
Z0NS6°

eoelig”.

€0+ 59€°
€ovsee”
€0rS91"
COHEET”
€0+ TTT"
20+026°

€O+ TSN
£0+552*
€0+6gT *
€0rSTT”

2o+noL’

20+£€9°

£0+90T"
k|

e

20+92¢€ "

€0+191°
20+20T"
sor2EL”
Z2o+hS”

20+TSe”
20+892°
20+2T€°

€

To+€0g"°
T0+269°
TO+E09"
TO+E65*
TO+E09"

20+’
T0+199"
T0+2QL"
To+02L*
O+62L°

20e 12"
20+90T*
TO+8T6*
Tov29L”

20+06T"
200 N1
20+021"
20+001*
To+1Ig"

orEOn”
20+ TR "
20rgot”
eorE2T”
TO+L06°
TO+0EL"

2orEen”
20192
20081
20+g2T"

T0+T9°
TO+T45°
TO+N65°

4

TOrLLT®
TO+6ST"
T0+L2T°
T0+20T*
00-168°

TO+TET”
TO+gTL"
TO+g0T"
00-€06°
o0-g18"

o+ ST
00-029°
00-5€L°
00-019*

00-5LL"
00~60L°
00-on9*
00-195°
oo~£9n°
00-929°
00-9g5"
00-967°
00-12%°
00-6NE "
00-2L2"

00-805°
00+ L2
00-€9¢€*
00-€62°

TW0-012*
10-0L¢"
T0-1Eg”
107206°

=X

nn\oﬁumtcumﬁm = Nxs sanTeAURSTY

saIBap G = @
89°0 = @

SR AT Y o ~ NSO e~

N NIIWN O ML ~ M~

<2 VANO -

N Mo

syIyBe ut
eumTop prubry

001

0

o\mubm?um
‘ofl puog

107

Folb-ouT

2



20-g62°-
20-9T2*-
20-212"-
20-TTT"-

20-9%e*
20-TEE”
20-212°
£O-MET+
£0-06€°-

20-5LT"
20-6g1"
20-61T°
€0-L9°
€0-5mT”

£0-n6¢°
€0-0€9°-
€0-29L°~
€0€N6 *~
£000T "~

no-262*
so-¢el”
no-€2T°
HO-26€*
no-o€g*

€£0-0T€*
€o-1€2"~
fo-lé*
fo-25e”
o6

€0-90m°~

s

20-02h
20-061"
20-9LT"
20-901°

20-59t

20-€9n°~
2o-nen”
20~9€€"
20-go2*
€0-21L"

20-66T"
20-6€€°

20-01€"

20-5€e”
€0-ens”

2o~
20-LET°

eoer”
20~l0T*
€0-T6L°

€0-912°~

€0-169°

no-602° -

"

20-€ms- €0z - 00+BET- L 20-60€*-  20-9TY"  20-E9M°-  20-l@N°-  00MogN'~ L

Zo-oiTT  TOTIgRT  00vT697- § Z0-2€6°-  20-6l6"  20-TLT-  TO-TIZ' 00+529°- 9
20-TrZ’-  TO-Tge’-  00+ZTL- A oot 20602+ 20-T9T°  20-992°  TOMOE"- 00+ 201+~ f oot

Zo-tor 1072l 00+529 e 20-29T-  20-9l1°  €o-gfe  TO-UT' 00+ 529"~ 2

20-€sg"  TOGETT  00eZ6N’- L 20-562"-  20-09M°  20-659°-  TO-gIT’ 00+ 9gN" - L

20-zi6-  TO-SOT'-  00e279- ? No.wma.- No.mmm. 20-06L'-  20-€0T"- S.W.w.... S
gomgng - 20-902°- oo.mmh. _ N 20-00€°-  20-GT5"  20-CML’-  20-BgT'-  OOROZL'- 1 o

A T . ¢ o€ 20€€T- 20-l52'- 20-SgE°  2O-MSE* 00+ 229"~

. . Z0-€TI'-  20-LEE°  20-2N6'-  T0-9€2” 00+ 66N~ L

lougr: 10785 Q0w9g9"~ 9 20T~ 2029 To-GIL-  TO-i%e° 00+2€9° 9

To-get = g orLeL "~ 5 20-g5T'- 20-62§°  T0-lOT'~ TO-19T oowLal: 1
205.8° T 0eZNL" £ 20-9TI'- 20-§€€°  20-S89°  TO-€ST- 00+0TL"~ ot

21O S oot - ¢ ot fo-geT-- €O-NSgT  2O-lgEr  T0+S@g - 0Oel0S'- T

. . €0-9g¢'-  2Z0-602°- 20-059°~ TO-LOE* 00418~ L

2ogll-  T0-9l2 00+225"~ L €0-5T9"- 2o~  TO-ETI'-  TO-SiE° 00+059°~ 9

To-0eT'-  TO-5iE oo LoL"- 5 €0-120"- 20-€g2°  TO-LOT-  TO-LE€° 00+ghL" - n

To-€IT'-  T0-25€°-  0O+T0g"- 1 €0-0ET'- Z0-MIE*  20-9lg"  T0-9g2° 00+ TEL*- €
MNMM”- MWM%H o7 00 ¢ p no-2€9+  €o-9lN°  20-962°  TO-ONT'-  OOwE25™- 1 s

. . €0-g9T*  €0-lgS*  20-9§5°-  TO-15C° 00-€56~ L

2o-l5g” - TOLST 00+91L" - ? €OMET-  €0-206- 20-5€@°  TO-L0S°-  00-L&9T- 9

20-6L6'-  TO-TES 00+558"~ s €0-TST°  €0-926°- 20-106"  TO-995°-  00-TgL'- s

20-gLé"-  T0-GT5" 00+606 - 1 Mo-505°-  €0-gT9"- 20-589"  TO-Z6M-  00-S6L- €

20-2Ng TOgE-  00:906'- € T oum- sooen  Toome-  ooL- :
20-19°-  TO-TTN"- 00+158"~ 2 e fo-5L€*  go-2Te- 20-62°- TO-TEZ"- 00-€45°- T H

20769l TO05E9° 00+€L6° S €0-02€°-  0-€0T°- 20-6T"- TO-99€* S.onc”- L

20-619'»  T0-gl9'-  TOSOT'- 1 fovst  Cosm-- 005~ 108  ooTéL- s

20-908'= 10590 TOW0T'" £ €o-i€2'- €0-&2T- 20665’  T0-SEL-  OO-TI6 H4
MWWWN.- MWMWM“ %,.Mnom.“ m 1 $0-009°~ WO-TL9°  20-OEE°®  TO-9€5°- 00-L18°~ 2 T
o660 20-T0T" TO+SSE" 1 o €0-56T° -  £0-695° 20-5T2°~  T0-196°- T0+9L6" 1 (]

0,
€ z T-%1 sm@reu of m8="g s " ¢ ¢ =2 ul.ha»ﬁ»“hﬂa 2L sl
* s9exdep S = 6
ssaBop ¢ = 6 owntop pYubyr  om Buog o <
§0=9 el TepTozeqdy J0f

sxwey Teptoxwmdg o4

o (<]
Lykinand X
(o0, v o) (0] AR )
s L ]

folD-cut




20-10¢"-
20-1g2°~
20-09T°
€0-6L9°

20~ -
20-LTE"-
20-162*
20-912*
€0-102°

£0-596"
20-2L1"
(o AT ARy
20-L8T°

€052
£0-g1g"
20LTL -

20-5€T -

I o 0
syuey, TepToxsyds 404 Am@ g H T .y J/se My 2 o, ‘..v

2o-ELY"
20-2E€”
20-05T*
€0-186°

20-91°
20-155°
20-sen°
20-TlE"
€0-9M9°

20692

20-LUT"
20-€0€*
20-96€*
zo-om-
co-9m°
20~

€0-056"-
20-181°
20912
20-00¢€*
20-609°

€0-5gn°
€0-0L9°
€0-TT6*
20-066°
20-285°
co-R-~-

no-6g2*
no-6€€*~
n0-966°
no-zLe*
no-2ge*

n

20-g6L -
20-6€2°~
€0-028°

€0-€€2°-

20-T1g°-
20-556°

20-g€L-
20-185°-
20-N9T*-

20-61L~
10-50T°~
T0-%0T"

20-668°-

20-9€9° -
T0-001"-
10-8T1" -
ot~
10917~
20-986°

20-%05°
20-n9g°~
10-52T°~
10-29T°~
0-L5T

20-g1Tn°-
20-L€8"~
o=
T0-€£0€° -
T0-T92°.

T0-€9T1°-

09"~
T10-gle*~
T0-€52°~
10-102°
o€t

€

T0-H8T - 00+225° -
T0-9¢T* 00+QTL -
T0-102"° 00+EEL -
TO-9€T" 00+ THY" -

TO-L9T°=  00+gES"~
T0-T9T°-  00+689°~
20-609°-  00+16L°~
2072€E°-  OOvgLL:-
MO-gTL*~  OO0+SES"-

T0-29T°~  00+6€5°~
T0-612° 00+T2L°~
0-T91* 00+288°~
To-g2tr" 00+968" -

10-661° 00+595°~
10-€92° 00099L°~
T0-2S2* 00+189° ~
10-202° 00+ 196"~
T0-g2T°-  Q0+§66°-
20-S6n° 00+666°-

10-0%2* 00+119 * =

TO-182" 00+0Mg° -
To-fge* 00+966° -
10-T12° TOFTTT -

T0-L55° TO+TIT"

10-06T° 00+€5L "~
10-582° 00+666°~
10-€g2* TOHTT"-
TO~SEE" TO+LET -
T0-6T¢" TORGRT"-
T0-M6T" 00+5T6"

no-é9L° 20+921°-
no-20g°-  TOsSNT-
€0-M9Es-  TO+LOT

€0-geT’ 00+§98"~

€0-g21° - 00+259°
2 T=3
geoxSop ( = @
8°0 =3

s3us] TwpTolsyds

x08

5 © 2, 3
(s0% .:m\nuxumﬁ.t a

NN - SN0~ NAIJIWNNO ~ NBO o~ N MNIIO e~ NN~

O

sy3ydte ut
sumtop PYUbTT

so013op ¢ = 6
* g°0 pue Gg9°0 ‘G*0 ‘0 £3TOTIZULODY JO

IT @1q®L

9=

.Oo\% uconn

20-TS" -
20-€2°~
20-€6T°~
€0-g€9°

€0-€L5°-

20-65% -
20-62§°
2029
20-022°
€0-06L°

20~50€*
20-551°
20-2L€°
€0~61L°

20~€TE -
20-99€"°
20-29€"~
20-00€ "~
2o-s02*

€0-056"
20-25T°
20-99T"
20-902°
20-€22°-
z0-0€2°

€0~
€0-M19°
£0-9TL°
£0-926°~

ho-€25°
€0-195°
no-L9L°

n

¥

= 0 SIUSTOTIIO0) JISTINOJL

20~1L9° 20-€TL" - QO+EDS”
2022 - 20-926° Q0ONG" -

% T0-0R" - 8..85.14
il TO-N91"~ 00+629° -

€0-69T° e0-09L° 00v56N°~

20-999°~  TOT9T'-  00+92S"-
20-L0g° 20-195°-  00+l2L°-
20-069°-  20~98T°-  00+3SL°-

20-T9E "~ [{ead '] 0 00+959° =
202t co~2eT" 00215~
20-€€Q"~ T10-912°~ 00+ TES =
T0-L0T"~ 10-L02° 00+019°~

- T0-901" 00+909°~

20-gg2'~  20-l€g°-  0O+TgS’-

10-g0T* - T0-2€€° 00+g2L° -

‘= TO-OME'-  0Ov92g°-

T0-9TT° T0-6T¢"~ 00+5.8° -
10-e0T* T0-6L2°~ 00+11gg° -

20-29L" T0-gee*~ 00+ LEG*~
20255 = To-g5e* 00+609° ~
20-999* TO-Tg€* 00+L6L° =

10-0TT*~ 1ot 00+9€6"
T0-€21° = T0-LE0° T0+T0T°~

T0-Nge"~ TO+SOT* =

T0-6T1* T0-292°- TO+SOT*~

20-6€°-  10-252° 00+ 169°
20-05L°-  TO-2IN" 00+926°~
YO-10T°-  T0-94M° T0+L0T"-
TOTET T0-26%° TO+8TIT* -
10-951° €0-S0T° T0+QL2°
T0~9LE 20-691° TO+SST*
T0-12° €0-TR'~  TO+OTT*
€ H T=3%
899189p § = @

89°0 = @
syuel TeproIddg Jog

Aa__nn...M\a_r«m..M )=

N MINO ~as - NN~ N3O~

N MU0

<UD £~

€
14
T

suydte uy
sumyop pTnbIT

00T

ot

0

F) \Nd»nnbn
‘ON puog

109

sz>bl)-C>LAT“
T2



00+968°
00+1185*
00+929*
00+098*

ok

[O+€0T

00+926*
T0+L9T"
TO+SLT"

TOrENT”

TO+T6T"

o S9T*

TO+6T°

TOHET”
TorONT"

T0+02T*

oL
TO+HE2T -
TO+OTT "~
TO+TTT -
TOHNTT -

TO+OET "~
TOFQTT -
TO+2TT*-
TO+gOT '~
TOHETT -

00+ TN" -

00+52L*
00+0M9*

00+899°
00+ELL"
TO+50T*

TO+STT"
00+21L*
00+STL*
00+9ML*
To+t01"

00+866"
00+858"
00+26L°
00+96L*
00+628°

00+826°
0o+5Ng*
00+g08"
00+16L"
00+6€8°

00+199°

00+gh2 - 00+€£ST
00+1S2°=  QO+ML
00+5€€° - 00+2ST
00+LEN"~ 00+ 652
00+zgE - 00+L8T
00s462°-  00k9NT
00+ 195~ 00+£22
00+595°~ 00+S6T
0042217~ 00+19T
00+9LE "~ 00+$ST
00+S6E°~ 00+EMT
00+651* - 00+1ST
00+129°~ 00+N4T
00+099° = 00+£12
00+MEN"~ 00+NST
00+021%*~ 00+£1MT
00+MEN "~ 00+ THT
00+529°~ 00+€6T
00+OLS "= 00+081
00+ 61"~ 00+TST
00+651° = 00+gET
00+ 651~ 00+9ET
00+EQN "~ OO+ENT
00+ TES"- 00+€ST
00+28N" - 00+ LET
00+29M" - 00+ TET
00+EGN "~ 00+SET
00¢1TS™~ 00+$9T
00+29€ ° = T0-€£6
2 Tex
soaxBep C = @
So=29
sYwel TepTOTads 04
v Y=Y

L
s
n
z 00T
L
9
!
2
T ot
9
s
€
2
T ()8
L
s
n
€
T s
9
s
n
€
e 2
s
T
€
e
1 T
1 o

Sputte UT o/ u"Bde"d

SunTop PYRbIT  coN puog

00+988"
00+ TE9”
00+018°
TO+6ET"

TO+61T*

00+SQM*
00+LLE"
00+L5€°
00+ 191"

00+ LOL*
00+SL%°
ooMTLN”
00+L19*

00+256"
00+22L*
00+9€9*
00+699°
TO+20T"

TO+60T*
Tor6N8"
TOHMEL”
T0+8SL°
TO+SOT*

TOHTET”
00+066°
00+1198°
00+228°
00+589°
TO+€0T"

TO+ML*
TO+QOT"
00+698°
00+198"

00+L9L°

€

00+gNE "~ 00+192°

00+5L2*- 00+SQT"
00+252°~ 00+NIT”
00+E2E = 00+15T*

00+ - 00+ 612
00+L62°~ 00+09T"

00HN62 * - 00+ L1T*
00+ g€~ 00+LST*
00+gNs” - 00+ €2*
00+021" = 00+£QT"
00+SLE "+ 00+8NT"
00+96€ "~ 00+Q'TL
00+019° - 00+961*
00+£29° 00+1€2
00+T6M]' - 00+£91T
00+OEN" - 00+1ST
00+ LN~ 00+05T
00+5€9°~ 00+L6T
00+25L°~ 00+S'R
00+9LS "~ 00+68T
00+0T5°~ 00+99T
00+E60"- 00+SST
00-TE5°~ 00+ 19T
00+NEG" - 00+002
00+12g° = 00+ g2
00+0€9°~ 00+26T
00+615°~ 00+65T
00HHES - 00+g9T
004226~ 00+g22

H T=2

s8I C = 9
0=3

sxuwel TepTOIMdg 204

g%

N0~

N M0 - [Sale Aol g ~ N3O0~ NN~

N2~

ot



00+ LY6"
00+6N6°

TO+09T°

TO+9ET"

00+258"~

TOrSgT -
TO+621°~
TO+60T" -
00w LS6°~
00+626°~
00+226°~

T0+9T2° -
TOHMST -
00+S2T -
TO+80T"~
00+226°~

TOr3NRE "~

00+915*
00+ENE”
00roNE*
00+£NS*

00+g0g*
00+91S"
oo+ TSN
00+205°
o LOT"

TO+OTL"
00+T9L*
00+615°
00+585°

T+ L2T*
00+068"
00+6€L°
00+959°
00+ 129°
00+809°

To+LNT*

TO+90T".

00+058°
00+g2L*
00+955°

TO+S9T*
TOHNIT”
00+€£26°
00+0TS*
00+085"
00+2EL’

0+€2T"
00+g99°
00+26L°
00+%6L°
00+588*

€

00+S9E"-  OO+STE®

- 00+T9T"
00¢552°-  00+9€T"
00+SLE"-  OO+6MT*

00+TQ°~ 00s282°
00+gEE"~  00+96T°
00+882°~  00+9ET*
00+9TE -  OO+TET"
00+€Mg°~  00+602°

00+2€9°~  00+092°
0O+~ 00+0BT"
00+0€€°~  OO+&TL"
Q0+g2E"= 0O+ TTT”

00952°
00+605°-  00HJLT"
00+qTR*-  00+SET
00+09€°~  00rTIT
0+S2€°-  T0-456°
00+Lo€°-  TO-€l8"

Q0+6Tg°~  OO+gNR*
00+885°~  O0O+TLT*
00+E9M"~  OO+&2T"
00+2Q€°-  00+20T*
00+L22°-  TO-lGN°

00+B06°~  00#25Z*
00+929°=  00*991°
00¢S6N°~  00+l2T’
00+S2 - TO-0RL"
00+T92°-  TO-009°
00+0EE"~  T0-255°

00+085°~  O0O+TET"
00+EEN - T0-896°
00+96€°~  10~L08°
00+N6E° -  TO-TOL®
00orONM" - TO-6£9°

numo.uwov [4 M n@ 1
8°0 = ®
sywey, Teproxaydg Jog

g%

N ANO ™~ N0~ N WO NEO - SO N3N

N MmN

syjuste uy o
sunToA PTUbFT toN

soa189p ¢ = @
*'@*0 pue Q9°0 ‘G0 ‘0 A3TOTIJUSVOF jo
syue], Teproaaydg aog ® \Mm = xm TTBM 2® Spowmusald Ty

0

X,
=

ITIT sTq®EL

00+£06°
00+519*
00+6T9°
00+006*
TO+L*

TO+IT"

00+L08"
TOFRT*
TO+NQT"

T0r€02"
T0+Q2T*
TO+611°
TO+06T"

TOrE9T"
oo
T0+62T°
TOP9ET*
TOrgET"

™elz"
0 L6T*
T0+09T"
TOr6ET"
TOFTET®
W0+0ET*

T0e562°
TOPG02*
TOH69T"
Tos LT

TO+QST*
TO+TNT®
ToHITe

00+28L*
00+2TL*
00+ THL®

$

g

g

3
NSO

00+MEN -  00+652 L
00+€62°-  00+LST S
00+562°~  00+2NT 1
00+EON" - 00+2ST 4
00+965°~  00+@6T I
00+585°=  00+QN2° L
00+8SE°~  OO+SET" N
00+ LIE™-  00+2€T’ ¢
00+EZY'~  OOMMET* 1
00+06N* - 0OVMLT" 9
00+6TH = OO+ENT' S
00+€6€°~  00+G2T° 1
o0r26€°-  O0OFT2T* €
00+0EN"~  00+62T* 2
00+8LL'~ o043 L
00+0LS ~  0O+NLT' 9
00+TLN - 00+gET" A
00+ T2N°=  Q0+6TT" n
00+06€°=  00+L0T" €
00+LLE"=  00+20T* 2
00+L98°=  00+gI2" L
00+5T9°~  00+#2LT" 9
00+215°=  00+QET" S
00+6EN° =  OO+STT” n
o00+26€°~  TO-LT6" €
00vE9€ - 10-208° 2
00+TRE"~  TO-€el* 1
4 T=2 syydTe uYT
sumyop pInbry
goaxdap ¢ = @
89°0 = 3
sywe], Teprorads Ioi
o=

00T

0

of. 6aw¢|bm

Qw puog

111

\—
3
0
AR
Q
L






APPENDIX A
SYMBOL LIST

Quantities are nondimensional unless otherwise designated. When appropriate,
the relation between a dimensionless variable and the physical dimensional
one, which is topped by a bar, is given. Underlined variables are generally

vectors.

English Alphabet
a ~-Dimensional semi-major axis of container. The character-
istic length with respect to which the variasbles are made
nondimensional.
A -Diagonal matrix whose entries are areas of zones on free
surface;

-Matrix in generalized eigenvalue-vector problem.

Ak -Coefficient of Qk in Fourier expansion of perturbed
velocity potentisal.
Ak(m) ~Coefficient of Qk cos(mwot) in Fourier expansion of
perturbed velocity potential.
b -Semi-minor container axis = b/a.
B -Matrix in generalized eigenvalue-vector problem.
?tr -Transverse time-varying Bond number = pgtrae/c.
Btr -Amplitude of Btr' ) .
B, -Axial Bond number = pg & /o (assumed non-negative).
C -Curvature of meridian of equilibrium free-surface.
Cy ~Contribution of lower intersection to FX .
C -Coefficient of sin(mnot) in Fourier expansion of periodic
perturbation.
Qu -Contribution of upper intersection to FX .
-Matrix approximating the Laplace equation within the liquid
with zero normal derivative on the equilibrium free-surface
and w and zero potential on the center line.
Dk -Fourier coefficient in the expansion of R in terms of
@k .
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-Eccentricity of an ellipse.

-Unit vector in 1T direction.

-Unit vector in r direction,

-Unit vector in s direction.

-Unit vector in 6 direction.

-Unit vector in T direction.

-Arbitrary function of time = [o/(pa)] l/2 f.

-A generic function of convenience.

-lateral force = Fx/oa.

-ith component of G 1in surface polar normal coordinates.
-Dimensional time-varying lateral acceleration (positive
when acting in direction of increasing X).

-Dimensional steady axial acceleration (positive when acting
downward) .

-A vector function.

-Mean curvature of free surface = aJﬁ,

-Signed scalar magnitude of derivative of position vector
with respect to ith coordinate direction, i = 1,2,3.

~-See capital eta.

-Modulus (k2 = m, where m 1is the parameter of a Jacobian
elliptic function).

-Real quarter period of a Jacobian elliptic function.

-Unit vector in 2z direction.

-Ieft triangular factor of the matrix S.

-Index, particularly in Fourier sine expansion of perturbing
acceleration.

-Moment of lateral force = M /cag.

-Equivalent mass for mechanizal analogue for kth mode =
(148 Mi(a%0) -

-Unit vector normal to free surface.

-Unit vector normal to container wall.

-Pressure = pa/o.

-Gas pressure = 5ga/0.
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sn
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~-Static liquid pressure at a fixed point on equilibrium
free surface = 5Oa/0.
Distance from (R,Z) to upper branch of ellipse along
r =R.
-P = max(P:0 < s £s5 -6, 0< 6 < As).
-Distance from (R,Z) to lower branch of ellipse along
r = R;
~-Coefficient of én in the free-surface boundary condition;
-A function of convenience.
-Radial coordinate = Tr/a.
-Radial coordinate of point on equilibrium free-surface
meridian = R/a;
-Right triangular factor of the matrix S.
-Principal radii of curvature of equilibrium free-surface
= ﬁl/a, ﬁé/a.
~Radius vector from origin of tank fixed coordinate system
- T/a.
-Arc length along equilibrium free surface meridian = s/a.
-Symbol for 5, on plotted output.
-Tridiagonal matrix S = L optmat,

2
-A Jacobian elliptic function.

-Time = [(1+]30[)c5'/(pa3)]l/2 t;

-Dummy variable.
-s=-coordinates of mid-points of two adjacent mesh intervals.

-Tridiagonal matrix approximating the free-surface boundary"
operator L;

-As superscript denotes transposition;

-Period of B, = [(1+Ba)0'/(pa3)]l/2 T,

-RS in system of first order differential equations for
meridian of equilibrium free-surface.

-Fluid velocity = V@ = [(1+Ba)c/(pa)]-l/2 .

~-Volume = V/(¢n525/3).
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Greek Alphabet
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&

ij
As

-Energy amplitude of kB mode = ﬁk/(caz)-

-Denotes container wall;
-Complex variable.

-Weight in integration formula.

-ZS in system of first order differential équations for
meridian of tank wall.

-Cartesian coordinate = r cos® = x/a

-Maximum lateral mass displacement of mechanical analogue
- %/a.

-Radial coordinate of point on container wall meridian
= X/a (measured from polar axis).

-Vector of approximations to & for mesh points not on
free-surface.

-Improved approximation for y.

-Axial coordinate of point on container wall meridian
= Y/a (measured from equatorial plane).

-Axial coordinate = z/a.

-Vector of approximations to & on the free-surface.

-Axial coordinate of action point of mechanical analog
= Ek/a (measured from the tank center).

-Initial guess for z.

-Improved approximation for 3z.

-Axial coordinate of point on equilibrium free surface

meridian = Z/a.

-Ratio of periodic pulse width to half period to the per-
turbing acceleration.

-Kronecker delta = 1 if j = k, otherwise = O.

-Mesh spacing on s .

-Perturbing pulse width.

-Mesh spacing on w.

-A complex variable.

-Normal coordinate = ﬂ/a.

-Normal coordinate of free surface = ﬁ/a.
-Angular coordinate

-Contact angle.
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-Spring constant for mechanical analogue for kth mode

= ik/c.

-Pressure difference across a fixed point on the equili-
brium free surface = pg-po; .

~-Approximation to the eigenvalue w .

-Guessed A 1in Wielandt inverse-iteration.

-Improved A 1in Wielandt inverse-iteration.

-Integer index.

-Integer index.

-Dimensional liquid density.

-Dimensional surface tension.

-Arc length along container wall meridian = T/a.

-The length of a container meridian from pole to pole

= 7 /a. |

-Approximation to & at the jth mesh point.

-Vector of approximation to §&.

-Vector component of ¢ for points on equilibrium free-
surface.

-Vector component of ¢ . for points not on equilibrium
free-surface.

-Velocity potential = [(l+Ba)0a/p]-l/ 2 3.

-¢ for k™! normal mode.

-33%/3n.

-Angle between radial direction and container wall meridian.
-Angle between radial direction and equilibrium free surface
meridian.

-Frequency = [(1+Ba)0/(pa3)]'l/2 we

-w of k%h normal mode.

-w of periodic B, _.

tr
-Angular rotation rate of tank-fixed coordinate system

- [(148)0/(pa3)1"Y/2 @

-Euclidean vector norm
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Combining Subscripts
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tr

-Index, usually for points and values belonging to boundaries.

-Index denoting kth normal mode. .

-Denotes lower circle of intersection, if any, of equilibrium
free-surface and container wall.

-Index, particularly in Fourier sine expansion of perturbing
acceleration;

-Also denotes mean or maximum.

-Denotes differentiation in the exterior normal direction.

-Denotes transverse (lateral) direction.

-Denotes uppermost intersection of equilibrium free-surface
and container wall.

-Denotes container wall.

-Denotes the axial directiom.
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